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SOME SHORT INDICATIONS OF SOLUTIONS.

1. (3p) LetΩ be the sample space of a dice toss.

(a) Give the smallest, and the largest,σ–algebra inΩ, respectively. How many elements are there
in thoseσ-algebras? Show also explicitly that these two sets fulfills the conditions for being a
σ-algebra.

(b) Show that the intersection of twoσ-algebras is aσ-algebra.

(c) Find an example of twoσ-algebras whose union isnot aσ-algebra.

Solution: We have thatΩ = {1, 2, 3, 4, 5, 6}.
(a) The smallestσ-algebra is the trivial one:{∅, Ω}, and the largest is the set of all subsets, i.e. the

power set toΩ. This set has26 = 64 elements. It is easy to see that the unions and complements
are included in thoseσ-algebras.

(b) We have that complements and the unions in the intersection are also included in the intersec-
tion.

(c) Let
σ1 =

{{1}, {2, 3, 4, 5, 6}, ∅, Ω}

and
σ2 =

{{1, 2}, {3, 4, 5, 6}, ∅,Ω}
.

Then we have that
{1, 3, 4, 5, 6} ∈ σ1 ∪ σ2,

but the complement to this set,
{2} 6∈ σ1 ∪ σ2.

2. (3p) The dynamics ofX(t) is given by the following stochastic differential equation fort > 0:

t dX(t) = −(
3− 4

2 + t2
)
X(t) dt + tβ(t) dW (t).

Giveβ(t) such that the variance

Var
(
X(t)

)
=

t

(2 + t2)2
.

Solution: We rewrite the SDE by divide byt( 6= 0) and simplify to

dX(t) = −2 + 3t2

2t + t3
X(t) dt + β(t) dW (t).

This is then reformulated to

d
(
X(t)(2t + t3)

)
= (2t + t3)β(t) dW (t), that is,



X(t) =
1

2t + t3

∫ t

0

(2u + u3)β(u) dW (u) +
1C

2t + t3
.

Which gives us that

Var
(
X(t)

)
= E[X2(t)] =

1
(2t + t3)2

∫ t

0

(2u + u3)2β(u)2 du.

In order to have

Var
(
X(t)

)
=

t

(2 + t2)2

we want that ∫ t

0

(2u + u3)2β(u)2 du = t3.

This is obtained by choosing

β(u) =
√

3
2 + u2

.

3. (3p) LetW (t) be a Brownian motion, and letΘ(t) be an adapted process to the filtrationF(t) of
W (t). Let

Z(t) = exp
(−

∫ t

0

Θ(u) dW (u)− 1
2

∫ t

0

Θ2(u) du
)
, and let

W̃ (t) = W (t) +
∫ t

0

Θ(u) du.

Compute the differentiald( 1
Z(t) ), and express the answer using the differentialdW̃ (t).

Solution: (See exercise 5.5.) We have that Itô-Doeblin first gives us thatdZ(t) = −Θ(t)Z(t) dW (t),
and then also

d(
1

Z(t)
) = −dZ(t)

Z2(t)
+

dZ(t) dZ(t)
Z3(t)

,

where we used the auxiliary functionf(x) = 1
x . This gives us that

d(
1

Z(t)
) =

Θ(t) dW (t)
Z(t)

+
Θ2(t) dt

Z(t)
=

Θ(t)
Z(t)

dW̃ (t).

4. (3p) Let us study a financial model with one stock and one bond. The value of the stock is given by
S(t) = S(0)eαt+σW (t), and the value of the bond isB(t) = B(0)ert, whereW (t) is a normalized

Wienerprocess. Letλ = α+σ2/2−r
σ and letWλ(t) = W (t) + λt.

(a) Give a (financial) interpretation ofλ.

(b) We are interested of the stock’s price process in relation to the bond, that is the processR(t) =
S(t)/B(t). Give an expression of the differentialdR(t) using the differentialdWλ(t).

Solution: λ is usually called the market-price of risk and describes the normalized (division withσ)
difference between the “drift”α + σ2/2 of the stock value,and the interest rater of the bond.



Note that we can writedS(t) = S(t)
(
(α+σ2/2) dt+σ dW (t)

)
which we use in the solution below.

dR(t) = d(S(t)/B(t)) = d(S(t)e−rt) = (Itô-Doeblin) =

= S(t)((α + σ2/2) + σ dW )e−rt − re−rtS(t) dt = . . . = σS(t)e−rtdWλ(t) = σR(t)dWλ(t).

5. (3p) LetK(t) be a certain exchange rate at timet. We model this rate by using a given volatility in
the model

K(t) = C0e
∫ t
0 σ(u) dW (u),

whereC0 > 0 andσ(u) ∈ L2[0, T ]. Let k > C0 be a given critical level for this exchange rate.
What is the probability, in the given model, that the exchange rate will stay below this levelk, from
t = 0 to t = T?

Solution: Let x = ln(k/C0), then the probability is:

P [ max
0≤t≤T

∫ t

0

σ(u) dW (u) ≤ x].

Using the reflection principle and that

∫ t

0

σ(u) dW (u) is equal in distribution toW
(∫ t

0

σ2(u) du
)

by Theorem 4.4.9 in Shreve’s, we will get after some calculation that the probability for staying
below the critical level is

Φ
(

ln(k/C0)∫ T

0
σ2(u) du

)
.

6. (4p) (Vasǐceks model)

(a) State Vasǐceks model for the interest processR(t) on differential form, i.e. give the expression
for dR(t).

(b) Derive the distribution ofR(t) in this model using Itô–Doeblin’s formula, and the result (The-
orem) on Itô integrals of a deterministic integrand.

Solution: See Example 4.4.10 on p. 150 in Shreve’s.

7. (4p) (Feynman-Kac)
State and prove the Feynman-Kac Theorem. Furthermore, make a short comment on the practical
use of this theorem for financial applications.

Solution: See Theorem 6.4.1 on page 268 in Shreve’s book.


