SOLUTIONS: FINANCIAL DERIVATIVES AND STOCHASTIC ANALYSIS
 (CTH[TMA285]\&GU[M AM695])

August 28, 2007, morning (4 hours), v
No aids.
Examiner: Christer Borell, telephone number 0704063461
Each problem is worth 3 points.

1. Suppose $X=3 W\left(\frac{1}{3}\right)-W\left(\frac{1}{2}\right)+2 W\left(\frac{3}{4}\right)$. (a) Find a deterministic function $f(t), 0 \leq t \leq 1$ such that $X=\int_{0}^{1} f(t) d W(t)$. (b) Compute $\operatorname{Var}(X)$.

Solution. (a) We have

$$
\begin{aligned}
X & =3 W\left(\frac{1}{3}\right)-W\left(\frac{1}{2}\right)+2 W\left(\frac{3}{4}\right)=\frac{1}{3} W\left(\frac{1}{3}\right)+W\left(\frac{1}{2}\right)+2\left(W\left(\frac{3}{4}\right)-W\left(\frac{1}{2}\right)\right) \\
& =\frac{4}{3} W\left(\frac{1}{3}\right)+\left(W\left(\frac{1}{2}\right)-W\left(\frac{1}{3}\right)\right)+2\left(W\left(\frac{3}{4}\right)-W\left(\frac{1}{2}\right)\right)=\int_{0}^{1} f(t) d W(t)
\end{aligned}
$$

where

$$
f(t)=\left\{\begin{array}{l}
\frac{4}{3}, 0 \leq t<\frac{1}{3} \\
1, \frac{1}{3} \leq t<\frac{1}{2} \\
2, \frac{1}{2} \leq t<\frac{3}{4} \\
0, \frac{3}{4} \leq t \leq 1
\end{array}\right.
$$

(b) Since $E[X]=0$,

$$
\operatorname{Var}(X)=\int_{0}^{1} f^{2}(t) d t=\frac{16}{9} \cdot \frac{1}{3}+1 \cdot \frac{1}{6}+4 \cdot \frac{1}{4}=\frac{95}{54} .
$$

2. (The Vasicek interest rate model) Suppose

$$
d R(t)=(\alpha-\beta R(t)) d t+\sigma d W(t), 0 \leq t \leq T
$$

where α, β, and σ are positive constants. Find the distribution of the average rate $\frac{1}{T} \int_{0}^{T} R(t) d t$.

Solution. Set $R(t)=X(t)+c(t)$ so that

$$
d X(t)+d c(t)=(\alpha-\beta X(t)-\beta c(t)) d t+\sigma d W(t)
$$

and, furthermore, assume

$$
d c(t)=(\alpha-\beta c(t)) d t \text { and } c(0)=0
$$

From this

$$
c(t)=\frac{\alpha}{\beta}\left(1-e^{-\beta t}\right)
$$

and

$$
d X(t)=-\beta X(t) d t+\sigma d W(t)
$$

Hence

$$
X(t)=e^{-\beta t} R(0)+\sigma e^{-\beta t} \int_{0}^{t} e^{\beta u} d W(u)
$$

and it follows that

$$
E[X(t)]=e^{-\beta t} R(0)
$$

and

$$
\begin{aligned}
& \operatorname{Cov}(X(s), X(t))=\sigma^{2} e^{-\beta(s+t)} E\left[\int_{0}^{s} e^{\beta u} d W(u) \int_{0}^{t} e^{\beta u} d W(u)\right] \\
& \quad=\sigma^{2} e^{-\beta(s+t)} \int_{0}^{\min (s, t)} e^{2 \beta u} d u=\frac{\sigma^{2} e^{-\beta(s+t)}}{2 \beta}\left(e^{2 \beta \min (s, t)}-1\right) .
\end{aligned}
$$

We now set

$$
Y=\int_{0}^{T} X(s) d s
$$

Clearly,

$$
E[Y]=\frac{R(0)}{\beta}\left(1-e^{-\beta T}\right)
$$

and

$$
\begin{gathered}
\operatorname{Var}(Y)=\operatorname{Cov}\left(\int_{0}^{T} X(s) d s, \int_{0}^{T} X(t) d t\right)=\int_{0}^{T} \int_{0}^{T} \operatorname{Cov}(X(s), X(t)) d s d t \\
\quad=\frac{\sigma^{2}}{2 \beta} \int_{0}^{T} \int_{0}^{T} e^{-\beta(s+t)}\left(e^{2 \beta \min (s, t)}-1\right) d s d t
\end{gathered}
$$

$$
=\frac{\sigma^{2}}{2 \beta^{3}}\left(2 \beta T-3+4 e^{-\beta T}-e^{-2 \beta T}\right) .
$$

Since

$$
\int_{0}^{T} c(t) d t=\frac{\alpha}{\beta}\left(T+\frac{1}{\beta} e^{-\beta T}-\frac{1}{\beta}\right)
$$

we get that the random variable $\frac{1}{T} \int_{0}^{T} R(t) d t$ is Gaussian with expectation

$$
\frac{R(0)}{\beta T}\left(1-e^{-\beta T}\right)+\frac{\alpha}{\beta}\left(1+\frac{1}{\beta T} e^{-\beta T}-\frac{1}{\beta T}\right)
$$

and variance

$$
\frac{\sigma^{2}}{2 \beta^{3} T^{2}}\left(2 \beta T-3+4 e^{-\beta T}-e^{-2 \beta T}\right)
$$

3. Let $S_{f}(t)$ denote the price in foreign currency of a foreign stock and $Q(t)$ the exchange rate, which gives units of domestic currency per unit of foreign currency. Moreover, suppose K and T are strictly positive real numbers and consider a European derivative which pays the amount

$$
Y=\left(S_{f}(T)-K\right)^{+}
$$

in domestic currency at maturity T. The domestic and foreign interest rates are constant and denoted by r and r_{f}, respectively. Derive the price $\Pi_{Y}(0)$ in domestic currency of the derivative at time 0 under the following condition:

There exists a Brownian motion $W=\left(W_{1}, W_{2}\right)$ in the plane such that

$$
\left\{\begin{aligned}
d S_{f}(t) & =S_{f}(t)\left(\alpha_{S_{f}} d t+\sigma_{11} d W_{1}(t)+\sigma_{12} d W_{2}(t)\right) \\
d Q(t) & =Q(t)\left(\alpha_{Q} d t+\sigma_{21} d W_{1}(t)+\sigma_{22} d W_{2}(t)\right)
\end{aligned}\right.
$$

where the volatility matrix $\left(\sigma_{i k}\right)_{1 \leq i, k \leq 2}$ is deterministic and invertible and $\alpha_{S_{f}}$ and α_{Q} are real constants.

Solution. Introducing $\sigma_{i}=\left[\sigma_{i 1} \sigma_{i 2}\right], i=1,2$, we have

$$
\left\{\begin{aligned}
d S_{f}(t) & =S_{f}(t)\left(\alpha_{S_{f}} d t+\sigma_{1} \cdot d W(t)\right) \\
d Q(t) & =Q(t)\left(\alpha_{Q} d t+\sigma_{2} \cdot d W(t)\right)
\end{aligned}\right.
$$

Let $B_{f}(t)=B_{f}(0) e^{r_{f} t}$ be the the foreign bond price at time t and, for simplicity, assume $B_{f}(0)=1$. Set $S(t)=Q(t) S_{f}(t)$ and $U(t)=Q(t) B_{f}(t)$, $t \geq 0$. Then $(S(t))_{0 \leq t \leq T}$ and $(U(t))_{0 \leq t \leq T}$ are the price processes of domestic traded assets and

$$
\left\{\begin{array}{c}
d S(t)=S(t)\left(() d t+\left(\sigma_{1}+\sigma_{2}\right) \cdot d W(t)\right) \\
d U(t)=U(t)\left(() d t+\sigma_{2} \cdot d W(t)\right)
\end{array}\right.
$$

for appropriate drift coefficients which need not be specified here.
Changing to Brownian motion \tilde{W} under the domestic risk-neutral measure, we get

$$
\left\{\begin{array}{c}
d S(t)=S(t)\left(r d t+\left(\sigma_{1}+\sigma_{2}\right) \cdot d \tilde{W}(t)\right) \\
d U(t)=U(t)\left(r d t+\sigma_{2} \cdot d \tilde{W}(t)\right)
\end{array}\right.
$$

Moreover, since

$$
Y=\left(B_{f}(T) \frac{S(T)}{U(T)}-K\right)^{+}
$$

we have

$$
\Pi_{Y}(0)=e^{-r T} \tilde{E}\left[\left(\frac{B_{f}(T) S(T)}{U(T)}-K\right)^{+}\right]
$$

Here

$$
\frac{S(t)}{U(t)}=S_{f}(0) e^{\frac{1}{2}\left(\left|\sigma_{2}\right|^{2}-\left|\sigma_{1}+\sigma_{2}\right|^{2}\right) t+\sigma_{1} \cdot \tilde{W}(t)}
$$

and we get

$$
\begin{aligned}
& \Pi_{Y}(0)=e^{-r T} \tilde{E}\left[\left(B_{f}(T) S_{f}(0) e^{\frac{1}{2}\left(-\left|\sigma_{1}\right|^{2}-2 \sigma_{1} \cdot \sigma_{2}\right) T+\sigma_{1} \cdot \tilde{W}(T)}-K\right)^{+}\right] \\
& =e^{-r T} \tilde{E}\left[\left(B_{f}(T) e^{-\left(r+\sigma_{1} \cdot \sigma_{2}\right) T} S_{f}(0) e^{\left(r-\frac{1}{2}\left|\sigma_{1}\right|^{2}\right) T+\sigma_{1} \cdot \tilde{W}(T)}-K\right)^{+}\right]
\end{aligned}
$$

Thus, if

$$
c(0, s, K, T)=s \Phi\left(\frac{\ln \frac{s}{K}+\left(r+\frac{\left|\sigma_{1}\right|^{2}}{2}\right) T}{\left|\sigma_{1}\right| \sqrt{T}}\right)-K e^{-r T} \Phi\left(\frac{\ln \frac{s}{K}+\left(r-\frac{\left|\sigma_{1}\right|^{2}}{2}\right) T}{\left|\sigma_{1}\right| \sqrt{T}}\right) .
$$

it follows that

$$
\begin{aligned}
\Pi_{Y}(0) & =c\left(0, B_{f}(T) e^{-\left(r+\sigma_{1} \cdot \sigma_{2}\right) T} S_{f}(0), K, T\right) \\
& =c\left(0, e^{\left(r_{f}-r-\sigma_{1} \cdot \sigma_{2}\right) T} S_{f}(0), K, T\right)
\end{aligned}
$$

4. Let $W=(W(t))_{t \geq 0}$ be a Brownian motion and let $(\mathcal{F}(t))_{t \geq 0}$ be a filtration for this Brownian motion. Show that W is a Markov process.
5. Use the Itô-Doeblin formula to derivate the Black-Scholes-Merton partial differential equation for the price of a European call option.
