SOLUTIONS: FINANCIAL DERIVATIVES AND STOCHASTIC ANALYSIS

(CTH[tma285]&GU[MMA710])

December 15, 2007, morning (4 hours), v

No aids.

Examiner: Christer Borell, telephone number 0705292322

Each problem is worth 3 points.

REMARK: Below, if not otherwise stated, W denotes a one-dimensional

Brownian motion.

1. Set

$$\Delta(t) = \int_0^t \sin(t+u)dW(u), \ 0 \le t \le 1$$

and

$$X = \int_0^1 \Delta(t) dW(t).$$

Find $E[\Delta^2(t)]$ and $E[X^2]$.

Solution. By the Itô isometry

$$E\left[\Delta^{2}(t)\right] = \int_{0}^{t} \sin^{2}(t+u)du$$
$$= \frac{1}{2} \int_{0}^{t} (1 - \cos 2(t+u))du = \frac{1}{2} (t - \frac{1}{2}\sin 4t + \frac{1}{2}\sin 2t)$$

and

$$E[X^{2}] = E\left[\int_{0}^{1} \Delta^{2}(t)dt\right] = \int_{0}^{1} E[\Delta^{2}(t)] dt$$
$$= \int_{0}^{1} \frac{1}{2}(t - \frac{1}{2}\sin 4t + \frac{1}{2}\sin 2t)dt = \frac{5}{16} + \frac{1}{16}\cos 4 - \frac{1}{8}\cos 2.$$

2. Let $W = (W_1(t), W_2(t))_{t \geq 0}$ be a standard Brownian motion in the plane and $(\mathcal{F}_t)_{t \geq 0}$ a filtration for W. Set

$$\begin{cases} X_1(t) = \int_0^t \cos(as) dW_1(s) \\ X_2(t) = \int_0^t \sin(as) dW_2(s) \end{cases}$$

where a is a real constant. Prove that the process

$$Y(t) = X_1^2(t) + X_2^2(t) - t, \ t \ge 0$$

is a martingale.

Solution. We have

$$\begin{cases} dX_1(t) = \cos(at)dW_1(t) \\ dX_2(t) = \sin(at)dW_2(t) \end{cases}$$

and

$$\begin{cases} (dX_1(t))^2 = \cos^2(at)dt \\ (dX_2(t))^2 = \sin^2(at)dt \end{cases}$$

Hence, by the Itô-Doeblin formula,

$$dY(t) = 2X_1(t)dX_1(t) + \frac{1}{2}2(dX_1(t))^2$$

$$+2X_2(t)dX_2(t) + \frac{1}{2}2(dX_2(t))^2 - dt$$

and we get

$$dY(t) = 2X_1(t)dX_1(t) + 2X_2(t)dX_2(t)$$

or

$$dY(t) = 2\cos(at)X_1(t)dW_1(t) + 2\sin(at)X_2(t)dW_2(t).$$

Now

$$Y(t) = 2 \int_0^t \cos(au) X_1(u) dW_1(u) + 2 \int_0^t \sin(au) X_2(u) dW_2(u), \ t \ge 0$$

is the sum of two martingales and it follows that $(Y(t))_{t\geq 0}$ is a martingale.

3. (Black-Scholes model for two stocks) Suppose $S_1(0) > S_2(0)$ and consider a derivative paying the amount K to its owner at time of maturity T if $S_1(t) > S_2(t)$ for all $t \in [0,T]$ and, otherwise, the payoff is zero. Find the price of the derivative at time zero.

Solution. Using standard notation,

$$S_i(t) = S_i(0)e^{(r-\frac{1}{2}|\sigma_i|^2)t + \sigma_i \cdot \tilde{W}(t)}$$

where $\sigma_i = [\sigma_{i1} \ \sigma_{i2}], i = 1, 2, \text{ and }$

$$\left[\begin{array}{c}\sigma_{11}\ \sigma_{12}\\\sigma_{21}\ \sigma_{22}\end{array}\right]$$

is a volatility matrice.

Set $\alpha = \frac{1}{2}(|\sigma_1|^2 - |\sigma_2|^2)$ and $\delta = \sigma_2 - \sigma_1$ and note that $S_1(t) > S_2(t)$ for all $t \in [0, T]$ if and only if $\alpha t + \delta \cdot \tilde{W}(t) < \ln \frac{S_1(0)}{S_2(0)}$ for all $t \in [0, T]$. Therefore the price of the derivative at time zero equals

$$\Pi = e^{-rT} K \tilde{P} \left[\max_{0 \le t \le T} (\alpha t + \delta \cdot \tilde{W}(t)) < \ln \frac{S_1(0)}{S_2(0)} \right]$$

where \tilde{P} is the risk-neutral measure. Since \tilde{W} is a standard Brownian motion under \tilde{P} it follows that $(\delta \cdot \tilde{W})/\mid \delta \mid$ is a standard Brownian motion under \tilde{P} and we get

$$\Pi = e^{-rT} K \left\{ N(\frac{\ln \frac{S_1(0)}{S_2(0)} - \alpha T}{|\delta| \sqrt{T}}) - (\frac{S_1(0)}{S_2(0)})^{\frac{2\alpha}{|\delta|^2}} N(-\frac{\ln \frac{S_1(0)}{S_2(0)} + \alpha T}{|\delta| \sqrt{T}}) \right\}.$$

4. Suppose m>0 and $\tau_m=\min\left\{t\geq 0;\ W(t)=m\right\}$. Use the formula

$$P\left[\tau_{m} \leq t, \ W(t) \leq w\right] = P\left[W(t) \geq 2m - w\right], \ w \leq m,$$

to prove that τ_m has the density

$$f_{\tau_m}(t) = \frac{m}{t\sqrt{2\pi t}}e^{-\frac{m^2}{2t}}, \ t > 0.$$

5. Suppose $W = (W_1(t), W_2(t))_{0 \le t \le T}$ is a standard Brownian motion in the plane and $(\mathcal{F}_t)_{0 \le t \le T}$ a filtration for W and consider the following market model with one stock. The stock price process is governed by the equation

$$dS(t) = \alpha S(t)dt + \sigma_1 S(t)dW_1(t) + \sigma_2 S(t)dW_2(t), \ 0 \le t \le T$$

where $\alpha, \sigma_1, \sigma_2 \in \mathbf{R}$ and $(\sigma_1, \sigma_2) \neq (0, 0)$. Furthermore, it is assumed that the discount process is given by the equation $D(t) = e^{-rt}$, $0 \leq t \leq T$, where r is a positive constant. Find at least two risk-neutral measures.

Solution. The market price of risk equation reads

$$\alpha - r = \sigma_1 \theta_1(t) + \sigma_2 \theta_2(t), \ 0 \le t \le T.$$

First suppose $\sigma_2 \neq 0$. Since it is enough to find two risk-neutral measures we suppose $\gamma \in \mathbf{R}$ and set $\theta_1(t) = \gamma$ for all $0 \leq t \leq T$ and get

$$\theta_2(t) = \frac{\alpha - r - \sigma_1 \gamma}{\sigma_2}, \ 0 \le t \le T.$$

Now \tilde{P}_{γ} is a risk-neutral measure if

$$d\tilde{P}_{\gamma} = e^{-X_{\gamma}}dP$$

where

$$X_{\gamma} = \int_{0}^{T} (\gamma, \frac{\alpha - r - \sigma_{1} \gamma}{\sigma_{2}}) \cdot dW(t) + \frac{1}{2} \int_{0}^{T} |(\gamma, \frac{\alpha - r - \sigma_{1} \gamma}{\sigma_{2}})|^{2} dt$$

or

$$X_{\gamma} = \gamma W_1(T) + \frac{\alpha - r - \sigma_1 \gamma}{\sigma_2} W_2(T)$$

$$+\frac{1}{2}\left\{\gamma^2 + \left(\frac{\alpha - r - \sigma_1\gamma}{\sigma_2}\right)^2\right\}T.$$

Since W_1 and W_2 are independent $X_{\gamma_1} \neq X_{\gamma_2}$ if $\gamma_1 \neq \gamma_2$. Thus $\tilde{P}_{\gamma_1} \neq \tilde{P}_{\gamma_2}$ if $\gamma_1 \neq \gamma_2$.

The case $\sigma_1 \neq 0$ can be treated in a similar way.

A formula

For any $T, \sigma, x > 0$, and $\alpha \in \mathbf{R}$

$$P\left[\max_{0 \le t \le T} (\alpha t + \sigma W(t)) < x\right]$$
$$= N\left(\frac{x - \alpha T}{\sigma \sqrt{T}}\right) - e^{\frac{2\alpha x}{\sigma^2}} N\left(-\frac{x + \alpha T}{\sigma \sqrt{T}}\right).$$