FINANCIAL DERIVATIVES AND STOCHASTIC ANALYSIS (CTH[*tma285*], GU[*MMA710*]), Period 2, autumn 2008

ASSIGNMENTS

Must be handed in at the latest Friday, November 28 at 15^{00}

Problem 0 Suppose (X, Y) is a centred Gaussian random vector in the plane such that

$$\left\{ \begin{array}{l} \sigma_X = \sqrt{E(X^2)} > 0 \\ \sigma_Y = \sqrt{E(Y^2)} > 0 \end{array} \right.$$

and let $\rho = \frac{E[XY]}{\sigma_X \sigma_Y}$. Find the conditional expectation $E[Y^2 \mid X]$.

Problem 1 Suppose $X : \Omega \rightarrow]0, \infty[$ is a bounded random variable. a) Show that

$$E[X \ln X] \ge E[X] \ln E[X]$$

b) Compute $E[X \ln X]$ and $E[X] \ln E[X]$ when X has a uniform distribution in the interval]0, 1[.

Problem 2 The random variable U has a uniform distribution in the interval $\left]-\frac{1}{2}, \frac{1}{2}\right[$. Set $X = \tan(\pi U)$. a) Find the cumulative distribution function of X. b) Find $\mu_X(\left[-1,\sqrt{3}\right])$.

Problem 3 Show that the process $e^{-\frac{t}{2}} \cosh W(t)$, $t \ge 0$, is a martingale.

Problem 4 Suppose T > 0 and $M(T) = \max_{0 \le t \le T} W(t)$. Find $E\left[e^{M(T)}\right]$.

Problem 5 Let $n \in \mathbf{N}_+$ and suppose the stochastic process $(V_n(t))_{0 \le t \le 1}$, has continuous sample paths, which are affine in each subinterval $\frac{k-1}{n} \le t \le \frac{k}{n}$, k = 1, ..., n. Moreover, assume $V_n(0) = 0$ and

$$V_n(\frac{k}{n}) = \frac{1}{n^{\alpha}} \sum_{j=1}^k X_j, \ k = 1, ..., n$$

where $(X_j)_{j=1}^n$ is an i.i.d. and $\alpha \in \mathbf{R}_+$. Use MATLAB to draw a picture of a realization of the process $(V_n(t))_{0 \le t \le 1}$, if n = 1000,

(title('Problem 5a')) $\alpha = 1/2$, and $P[X_1 = 1] = P[X_1 = -1] = \frac{1}{2}$. (title('Problem 5b')) $\alpha = 1/2$, and $X_1 \in N(0, 1)$. (title('Problem 5c')) $\alpha = 1$, and X_1 has the same distribution as

the random variable X in Problem 2.

Problem 6 (MATLAB; title('Problem 6'), legend('50 log-Brownian asset prices')) Consider a stock price process $(S(t))_{0 \le t \le T}$, where

$$S(t) = S(0)e^{(\mu - \frac{\sigma^2}{2})t + \sigma W(t)}$$

Plot 50 realizations of the stock price process if S(0) = 1, $\mu = 0.05$, $\sigma = 0.5$, and T = 1.

Problem 7 (MATLAB; title('Problem 7'), legend('Theoretic value', 'Actual value') Consider a stock price process $(S(t))_{0 \le t \le T}$, where

$$S(t) = S(0)e^{(\mu - \frac{\sigma^2}{2})t + \sigma W(t)}.$$

Suppose h = T/N and $t_n = nh$, n = 0, ..., N. Define $cash(t_0)$ by the equation

$$c(t_0, S(t_0), K, T) = \Delta_C(t_0)S(t_0) + cash(t_0)$$

where $\Delta_C(t) = c'_s(t, S(t), K, T)$. Set

$$\Pi_1 = \Delta_C(t_0)S(t_1) + cash(t_0)e^{rh}$$

where r is the interest rate. Next define $cash(t_1)$ by the equation

$$\Pi_1 = \Delta_C(t_1)S(t_1) + cash(t_1)$$

and

$$\Pi_2 = \Delta_C(t_1)S(t_2) + cash(t_1)e^{rh}$$

and continue the process until maturity T. Plot the theoretic call prices $c(t_i, S(t_i), K, T), i = 1, ..., N$, and the portfolio values $\Pi_i, i = 1, ..., N$ in the same figure when $S(t_0) = 100, K = 105, T = 0.5, \mu = 0.05, r = 0.03, \sigma = 0.35$, and N = 130. Finally, find $\Pi_N - (S(T) - K)^+$.