FINANCIAL DERIVATIVES AND STOCHASTIC ANALYSIS (CTH[*tma*285], GU[*MMA*710]), Period 2, 2011

ASSIGNMENTS

Must be handed in at the latest Friday, November 25 at 15^{00} .

The problems numbered 1-5 are of standard type and you may hand in handwritten solutions. The MATLAB figures in Problems 6 and 7 must be simple to understand and with defined label and axes. No parts of the MATLAB figures are allowed to be written by hand. Good luck!

Problem 1 Suppose (X, Y) is a centred Gaussian random vector in the plane such that

$$\left\{ \begin{array}{l} \sigma_X = \sqrt{E(X^2)} > 0 \\ \sigma_Y = \sqrt{E(Y^2)} > 0 \end{array} \right.$$

and let $\rho = \frac{E[XY]}{\sigma_X \sigma_Y}$. Find the conditional expectation $E[Y^2 \mid X]$.

Problem 2 A stock price process $(S(t))_{0 \le t \le T}$ is governed by a geometric Brownian motion. Find the distribution of the random variable

$$\frac{1}{T} \int_0^T \ln S(t) dt$$

Problem 3 Suppose $X : \Omega \rightarrow]0, \infty[$ is a bounded random variable. a) Show that

$$E[X \ln X] \ge E[X] \ln E[X]$$

b) Compute $E[X \ln X]$ and $E[X] \ln E[X]$ when X has a uniform distribution in the interval]0, 1[.

Problem 4 Show that the process $e^{-\frac{t}{2}} \cosh W(t)$, $t \ge 0$, is a martingale.

Problem 5 Suppose T > 0 and $M(T) = \max_{0 \le t \le T} W(t)$. Find $E\left[e^{M(T)}\right]$.

Problem 6 (MATLAB; title('Problem 6'), legend('5 log-Brownian asset price processes')) Consider a stock price process $(S(t))_{0 \le t \le T}$, where

$$S(t) = S(0)e^{(\mu - \frac{\sigma^2}{2})t + \sigma W(t)}.$$

Plot 5 realizations of the stock price process in the same figure if S(0) = 1, $\mu = 0.05$, $\sigma = 0.5$, and T = 1.

Problem 7 (MATLAB; title('Problem 7'), legend('Theoretic value', 'Actual value') Consider a stock price process $(S(t))_{0 \le t \le T}$, where

$$S(t) = S(0)e^{(\mu - \frac{\sigma^2}{2})t + \sigma W(t)}$$

Suppose h = T/N and $t_n = nh$, n = 0, ..., N. Define $cash(t_0)$ by the equation

$$c(t_0, S(t_0), K, T) = \Delta_C(t_0)S(t_0) + cash(t_0)$$

where $\Delta_C(t) = c'_s(t, S(t), K, T)$ and set

$$\Pi_0 = \Delta_C(t_0)S(t_0) + cash(t_0).$$

Next define

$$\Pi_1 = \Delta_C(t_0)S(t_1) + cash(t_0)e^{rh}$$

where r is the interest rate and introduce the quantity $cash(t_1)$ by the equation

$$\Pi_1 = \Delta_C(t_1)S(t_1) + cash(t_1).$$

Let

$$\Pi_2 = \Delta_C(t_1)S(t_2) + cash(t_1)e^{rh}$$

and continue the process until maturity T. Plot the theoretic call prices $c(t_i, S(t_i), K, T), i = 0, ..., N$, and the portfolio values $\Pi_i, i = 0, ..., N$ in the same figure when $S(t_0) = 100, K = 105, T = 0.5, \mu = 0.05, r = 0.03, \sigma = 0.35$, and N = 130. Finally, find $\Pi_N - (S(T) - K)^+$.