FINANCIAL DERIVATIVES AND STOCHASTIC ANALYSIS (CTH[*tma*285], GU[*MMA*710]), Period 2, 2012

ASSIGNMENTS

Please hand in the problems below at the latest Wednesday, November 21 at 15^{00} .

Problem 1 Suppose $X, Y \in N(0, 1)$ are independent. Find E[X | X + Y] and E[XY | X + Y].

Problem 2 Suppose T > 0. A stock price process $(S(t))_{0 \le t \le T}$ is governed by a geometric Brownian motion. Find the distribution of the random variable

$$\frac{1}{T} \int_0^T \ln S(t) dt.$$

Problem 3 Suppose T > 0. A stock price process $(S(t))_{0 \le t \le T}$ is governed by a geometric Brownian motion. Find

$$\lim_{x \to +\infty} x^{-2} \ln P \left[\ln S(T) > x \right].$$

Problem 4 Suppose $(\mathcal{F}(t))_{t\geq 0}$ is a filtration for a standard Brownian motion W. If $X(t) = \cosh W(t), t \geq 0$, find

$$E\left[X^2(t) \mid \mathcal{F}(s)\right] \text{ if } s \leq t.$$

Problem 5 Let W be a standard Brownian motion and suppose $0 < a < b < \infty$. (a) Find

$$P\left[W(a) < 0 \text{ and } \max_{a \le t \le b} W(t) > 0\right].$$

(b) Find the probability that W has a zero in the interval [a, b].