TMA372/MAG800, PARTIAL DIFFERENTIAL EQUATIONS ASSIGNMENT 1

1. Write down a program that computes the $c G(2)$ finite element approximation of the two-point boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \quad \text { in } \quad(0,1) \tag{1}\\
u(0)=u(1)=0
\end{array}\right.
$$

assuming that the user supplies the data vector b (i.e. f is known). Make sure that the code is as efficient as possible using the knowledge from linear algebra and material from chapter 4 of the lecture notes. Test the code for $f(x)=6 x$.
2. Consider the continuous Galerkin $c G(1)$ method for the one-dimensional problem

$$
\left\{\begin{array}{l}
-\varepsilon u^{\prime \prime}(x)+u^{\prime}(x)=0 \quad \text { in } \quad(0,1), \tag{2}\\
u(0)=1 \quad u(1)=0
\end{array}\right.
$$

(a) Write down the discrete equations for the $c G(1)$ approximation computed on a uniform mesh with M interior nodes.
(b) Compute the approximation for $\varepsilon=0,01$ and with $M=10$ and $M=11$ and compare with the exact (analytic) solution.
(c) Compute the approximation with $M \approx 100$ and compare the result with the exact solution.
3. Consider the initial value problem

$$
\left\{\begin{array}{l}
\dot{u}(t)+4 u(t)=f(t) \quad \text { for } \quad 0<t \leq T \tag{3}\\
u(0)=u_{0}
\end{array}\right.
$$

(i) Let $u_{0}=1$ and $f(t)=t^{2}$. Compute the exact solution
(ii) Compute the $c G(1)$ approximation for the solution of the differential equation and determine the condition on the step size that guarantees that U exists.

Hints: For problem 1 you need to read chapter 5. A good starting point for problem 2 might be the Matlab or a C ++ code, which solves $-u^{\prime \prime}=f, u(0)=u(1)=0$ using $c G(1)$.

