Second Assignment

hand in at latest on Friday May 9

1. Let x and y be elements in a complex vector space with inner product and assume that

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

Does this imply that $\langle x, y \rangle = 0$? What happens if the complex vector space is replaced by a real vector space?

2. The operator A on $L^2([0,1])$ is defined by

$$(Af)(x) = \int_0^x f(y) \, dy, \ \ 0 \le x \le 1.$$

Find A^* .

3. Set

$$(Af)(t) = \int_{-\infty}^{\infty} \frac{f(s)}{1 + (t - s)^2} ds, \ f \in L^2(\mathbb{R}).$$

Prove that A defines a linear bounded and self-adjoint operator on $L^2(\mathbb{R})$. Finally prove that A is not a compact operator.

4. Suppose S is a closed convex subset of a Hilbert space H and let P_S denote the orthogonal projection onto S, i.e. for any $x \in H$, $P_S(x)$ denotes the point in S, which is nearest to x. Prove that

$$||P_S(x) - P_S(y)|| \le ||x - y||$$
 for all $x, y \in H$.

5. The operator $T: \mathcal{C}[0,1] \to \mathcal{C}[0,1]$ is defined by the equation

$$Tu(x) = u(x) + \int_0^x u(s) \, ds, \quad 0 \le x \le 1.$$

Prove that $\mathcal{N}(T) = \{0\}$ and $\mathcal{R}(T) = \mathcal{C}[0, 1]$. Finally determine the inverse T^{-1} of T and show that T^{-1} is a bounded operator.