1 A Note on Ordinary Differential Equations

1.1 Introduction

Let $c_0, \ldots, c_n \in C(I)$ be fixed, where $I = [a, b], n \geq 2$ and

$$c_n(x) \neq 0$$
, for all $x \in I$.

Set

$$Lu = c_n u^{(n)} + \ldots + c_0 u, \ u \in C^n(I).$$

The aim of this note is to show that the differential operator L with proper homogeneous boundary conditions has a so called Green's function. This means that solution can be written as an integral with the Green's function appearing as the kernel function. Moreover we show that provided the operator L is symmetric the solution has a spectral decomposition using the spectral theorem for compact self-adjoint operators on Hilbert spaces ([1] sats 4.10.2).

1.2 Existence of Green's functions

Our first result is the following fundamental existence theorem for ordinary differential equations.

Theorem 1.1. Assume $t_0 \in I$ and $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n$. Then for every $f \in C(I)$ there exists a unique $u \in C^n(I)$ such that Lu = f and $(u(t_0), u'(t_0), \dots, u^{(n-1)}(t_0)) = \xi$.

Proof. Set $y_1 = u, y_2 = u', \ldots, y_n = u^{(n-1)}$. The equation Lu = f is equivalent to

$$\begin{cases} y_1' = y_2 \\ \vdots \\ y_{n-1}' = y_n \\ y_n' = -\frac{c_0}{c_n} y_1 - \dots - \frac{c_{n-1}}{c_n} y_n + \frac{1}{c_n} f \end{cases}$$

or, using the vector notation $y = (y_1, \ldots, y_n)$,

$$y' = F(t, y), t \in I$$

for a vector-valued function F. This function satisfies a so called Lipschitz condition

$$|F(t,y) - F(t,z)| \le K|y-z|, \ t \in I, \ y, z \in \mathbb{R}^n,$$

for some $K \in \mathbb{R}$. Moreover note that the condition $(u(t_0), u'(t_0), \dots, u^{(n-1)}(t_0)) = \xi$ can be written $y(t_0) = \xi$. Picard's existence theorem ([1] theorem 5.2.5) in vector form yields the result.

We introduce the notation

$$\mathcal{N}(L) = \{ u \in C^n(I); Lu = 0 \}.$$

Clearly $\mathcal{N}(L)$ is a subspace of $C^n(I)$ since L is a linear operator.

Corollary 1.1. $\dim \mathcal{N}(L) = n$.

Proof. Let $t_0 \in I$ be fixed and define

$$Tu = (u(t_0), \dots, u^{(n-1)}(t_0)), u \in \mathcal{N}(L).$$

The linear mapping $T: \mathcal{N}(L) \to \mathbb{C}^n$ is a bijection from the previous theorem with the range \mathbb{C}^n . Hence we get $\dim \mathcal{N}(L) = \dim \mathbb{C}^n = n$.

For arbitrary functions $u_1, \ldots, u_n \in \mathcal{N}(L)$ we define the **Wronskian** for u_1, \ldots, u_n by

$$W(t) = \begin{vmatrix} u_1(t) & u_2(t) & \dots & u_n(t) \\ u'_1(t) & u'_2(t) & & u'_n(t) \\ \vdots & \vdots & & \vdots \\ u_1^{(n-1)}(t) & u_2^{(n-1)}(t) & & u_n^{(n-1)}(t) \end{vmatrix}, t \in I.$$

Theorem 1.2. The following conditions are equivalent:

- 1. $W(t) \neq 0$ for all $t \in I$.
- 2. $W(t_0) \neq 0$ for some $t_0 \in I$.
- 3. u_1, \ldots, u_n is a basis for the vector space $\mathcal{N}(L)$.

Proof. $(1) \Rightarrow (2)$: trivial.

 $(2) \Rightarrow (3)$: Take an $u \in \mathcal{N}(L)$. Since dim $\mathcal{N}(L) = n$ it is enough to show that u is a linear combination of u_1, \ldots, u_n .

Assume that $t_0 \in I$ is fixed and that $W(t_0) \neq 0$. From courses in linear algebra we know that there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{C}^n$ such that

$$\sum_{k=1}^{n} \alpha_k(u_k(t_0), \dots, u_k^{(n-1)}(t_0)) = (u(t_0), \dots, u^{(n-1)}(t_0)).$$

The function $v = \sum_{1}^{n} \alpha_k u_k \in \mathcal{N}(L)$ satisfies the relation

$$(v(t_0),\ldots,v^{(n-1)}(t_0))=(u(t_0),\ldots,u^{(n-1)}(t_0))$$

and by Theorem 1.1 we have v = u. Hence it follows that $u \in \text{span } \{u_1, \ldots, u_n\}$.

(3) \Rightarrow (1): Let $t \in I$ be arbitrary. We will show that $W(t) \neq 0$. It is enough to show that the columns in the determinant W(t) are linearly independent.

Assume that $\alpha_1, \ldots, \alpha_n \in \mathbb{C}^n$ and that

$$\sum_{k=1}^{n} \alpha_k(u_k(t), \dots, u_k^{(n-1)}(t)) = 0.$$

The function $v = \sum_{1}^{n} \alpha_{k} u_{k} \in \mathcal{N}(L)$ satisfies $v(t) = \ldots = v^{(n-1)}(t) = 0$ and is equal to the zero function by Theorem 1.1. However from $\sum_{1}^{n} \alpha_{k} u_{k} = \mathbf{0}$ it follows that $\alpha_{1} = \ldots = \alpha_{n} = 0$. Hence the columns in the determinant W(t) are linearly independent.

From now on we use the following notation:

$$\alpha_{ij}, \beta_{ij}, i = 0, \dots, n - 1, j = 1, \dots, n$$

are complex numbers and

$$R_j u = \sum_{i=0}^{n-1} [\alpha_{ij} u^{(i)}(a) + \beta_{ij} u^{(i)}(b)], j = 1, \dots, n.$$

are boundary operators. Moreover we set

$$Ru = (R_1u, \ldots, R_nu)$$

$$C_R^n(I)=\{u\in C^n(I): Ru=0\}$$

and

$$L_0u = Lu, u \in C_R^n(I).$$

Theorem 1.3. The following conditions are equivalent:

- 1. The mapping $L_0: C_R^n(I) \to C(I)$ is a bijection.
- 2. $\det\{R_j u_k\}_{1 \leq j,k \leq n} \neq 0$ for every (alternatively for some) basis u_1,\ldots,u_n i $\mathcal{N}(L)$.

Proof. (1) \Rightarrow (2): If the determinant in (2) is zero then there are $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ not all equal to zero such that

$$\sum_{k=1}^{n} \alpha_k R_j u_k = 0, \ j = 1, \dots, n.$$

The function $v = \sum_{1}^{n} \alpha_k u_k$ satisfies Lv = 0 together with Rv = 0. This yields a contradiction since $v \neq 0$ and $L_0v = 0$.

 $(2) \Rightarrow (1)$: Take an arbitrary $f \in C(I)$. It remains to prove that the equation

$$\begin{cases} Lu = f \\ Ru = 0 \end{cases}$$

is uniquely solvable. Set w = u - v, where $v \in C^n(I)$ satisfies Lv = f (Theorem 1.1), we obtain the equivalent equation

$$\begin{cases} Lw = 0 \\ Rw = -Rv. \end{cases}$$

With the ansatz $w = \sum_{1}^{n} \alpha_k u_k$ the determinant condition in (2) gives the existence of a unique solution.

Now let u_1, \ldots, u_n be a basis for the vector space $\mathcal{N}(L)$ and set

$$e(x,t) = \sum_{k=1}^{n} a_k(t)u_k(x)$$

where $a_1(t), \ldots, a_n(t)$ are chosen such that

$$\begin{cases} e_x^{(k)}(t,t) = 0, \ k = 0, 1, \dots, n-2 \\ e_x^{(n-1)}(t,t) = 1/c_n(t). \end{cases}$$

Note that the functions $a_1(t), \ldots, a_n(t)$ are continuous in t due to Cramer's rule. Also observe that for fixed $t \in I$ the function u(x) = e(x, t) is the unique solution to the equation

$$\begin{cases} Lu = 0 \\ u(t) = \dots = u^{(n-2)}(t) = 0, \ u^{(n-1)}(t) = 1/c_n(t). \end{cases}$$

The function $e(x,t), (x,t) \in I \times I$, is called the **fundamental solution** to the operator L. This function is of interest in connection with boundary value problems that we will discuss next.

Theorem 1.4. Let u_1, \ldots, u_n be a basis for $\mathcal{N}(L)$ such that

$$\det\{R_j u_k\}_{1 \le j, k \le n} \ne 0$$

and set $G = L_0^{-1}$. Then there exists a unique continuous function $g(x,t), (x,t) \in I \times I$, such that

$$(Gf)(x) = \int_{I} g(x,t)f(t)dt.$$

This is called the Green's function g and can be constructed as follows:

- 1. Set $\tilde{e}(x,t) = \theta(x-t)e(x,t)$, where θ is the Heaviside's function
- 2. Determine $b_1, \ldots, b_n \in C(I)$ such that the function

$$g(x,t) = \tilde{e}(x,t) + \sum_{k=1}^{n} b_k(t)u_k(x)$$

satisfies

$$R(g(\cdot, t)) = 0, a < t < b.$$

Proof. First set

$$\tilde{u}(x) = \int_{I} \tilde{e}(x,t)f(t)dt,$$

i.e.

$$\tilde{u}(x) = \int_{a}^{x} e(x, t) f(t) dt.$$

Repeated differentiations yield

$$\tilde{u}'(x) = \int_{a}^{x} e'_{x}(x,t)f(t)dt + \underbrace{e(x,x)}_{=0}f(x)$$

$$\tilde{u}''(x) = \int_{a}^{x} e''_{x}(x,t)f(t)dt + \underbrace{e'_{x}(x,x)}_{=0}f(x)$$

$$\vdots$$

$$\tilde{u}^{(n-1)}(x) = \int_{a}^{x} e^{(n-1)}_{x}(x,t)f(t)dt + \underbrace{e^{(n-2)}(x,x)}_{=0}f(x)$$

and

$$\tilde{u}^{(n)}(x) = \int_{a}^{x} e^{(n)}(x,t)f(t)dt + \frac{1}{c_n(x)}f(x).$$

From this we conclude $L\tilde{u}=f$. The function

$$u(x) = \int_{I} g(x, t) f(t) dt$$

satisfies the equation Lu = f since

$$u(x) = \tilde{u}(x) + \sum_{k=1}^{n} u_k(x) \int_{I} b_k(t) f(t) dt.$$

Finally we observe that

$$Ru = \int_{a^{+}}^{b^{-}} \underbrace{R(g(\cdot,t))}_{=0} f(t)dt$$

and the proof is completed.

The function g in Theorem 1.4 is called the **Green's function for the boundary** value problem

$$\begin{cases} Lu = f \\ Ru = 0. \end{cases}$$

Problem 1: Determine the Green's function for the boundary value problem

$$\begin{cases} -((1+x)u'(x))' = f(x), \ 0 \le x \le 1\\ u'(0) = 0, \ u(1) = 0. \end{cases}$$

Solution: The functions $u_1(x) = 1$ and $u_2(x) = \ln(1+x)$ form a basis for the solutions to the homogeneous equation -((1+x)u'(x))' = 0. Note that

$$\left| \begin{array}{cc} u_1'(0) & u_2'(0) \\ u_1(1) & u_2(1) \end{array} \right| = \left| \begin{array}{cc} 0 & 1 \\ 1 & \ln 2 \end{array} \right| = -1 \neq 0.$$

so there exists a Green's function. The fundamental solution $e(x,t) = a_1(t)u_1(x) + a_2(t)u_2(x)$ is given by

$$e(x,t) = a_1(t) + a_2(t) \ln(1+x)$$

and the constraints e(t,t) = 0, $e'_x(t,t) = -\frac{1}{1+t}$ easily yield

$$e(x,t) = \ln(1+t) - \ln(1+x).$$

The Green's function takes the form

$$g(x,t) = \theta(x-t)(\ln(1+t) - \ln(1+x)) + b_1(t) + b_2(t)\ln(1+x)$$

where

$$\begin{cases} g'_x(0,t) = 0 \\ g(1,t) = 0, \end{cases}$$

for 0 < t < 1. Hence we get

$$\begin{cases} b_2(t) = 0 \\ \ln(1+t) - \ln 2 + b_1(t) + b_2(t) \ln 2 = 0 \end{cases}$$

from which we obtain

$$b_1(t) = \ln \frac{2}{1+t}, \ b_2(t) = 0.$$

This finally gives

$$g(x,t) = \theta(x-t) \ln \frac{1+t}{1+x} + \ln \frac{2}{1+t}.$$

Problem 2: Assume that $\lambda \in \mathbb{C}$ and $f \in C([0,1])$. Show that the equation

$$\begin{cases} u''(x) + u'(x) + \lambda |u(x)| = f(x), \ 0 \le x \le 1 \\ u(0) = u(1) = 0, \ u \in C^2([0, 1]) \end{cases}$$

has a unique solution for $|\lambda| < e(e-1)$.

Lösning: We first determine the Green's function for the equation

$$\begin{cases} u'' + u' = F(x), \ 0 \le x \le 1 \\ u(0) = u(1) = 0. \end{cases}$$

The functions $u_1(x) = 1$ and $u_2(x) = e^{-x}$ form a basis for the solutions to the homogeneous equation u'' + u' = 0. With our standard notation we get

$$e(x,t) = 1 - e^{t-x}$$

and

$$g(x,t) = \theta(x-t)(1-e^{t-x}) + \frac{e^t - e}{e-1} + \frac{e - e^t}{e-1}e^{-x}.$$

Note that

$$t > x \Rightarrow g(x, t) = \frac{e^t - e}{e - 1} (1 - e^{-x}) \le 0$$

and

$$t \le x \Rightarrow g(x,t) = \frac{e^t - 1}{e - 1}(1 - e^{1-x}) \le 0$$

which implies $g \leq 0$.

For every $u \in C([0,1])$ define

$$(Tu)(x) = \int_0^1 g(x,t)(f(t) - \lambda |u(t)|)dt, \ 0 \le x \le 1$$

and observe that T maps C([0,1]) into $\{u \in C^2([0,1]); u(0) = u(1) = 0\}$. The equation in problem 2 has therefore a unique solution iff T has a unique fixed point. For $u, v \in C([0,1])$ it holds that

$$|(Tu)(x) - (Tv)(x)| = |\int_0^1 g(x,t)(\lambda|v(t)| - \lambda|u(t)|)dt| \le$$

$$\le |\lambda| \int_0^1 (-g(x,t))||v(t)| - |u(t)||dt \le |\lambda| j(x) ||u - v||_{\infty},$$

where $\| \|_{\infty}$ denotes the max-norm for C([0,1]) and

$$j(x) = -\int_0^1 g(x, t)dt.$$

Since j(0) = j(1) = 0 and j'' + j' = -1 it follows that

$$j(x) = \frac{e}{e-1} - x - \frac{e}{e-1}e^{-x}$$

and

$$\max_{[0,1]} j = j \left(\ln \frac{e}{e-1} \right) = \frac{1}{e-1} + \ln \left(1 - \frac{1}{e} \right) \le \frac{1}{e-1} - \frac{1}{e} = \frac{1}{e(e-1)}.$$

We conclude that

$$||Tu - Tv||_{\infty} \le \frac{|\lambda|}{e(e-1)} ||u - v||_{\infty}$$

and Banach's fixed point theorem ([2]) implies that T has a unique fixed point for $|\lambda| < e(e-1)$.

1.3 Spectral theory for ordinary differential equations

The linear mapping $L_0: C_R^n(I) \to C(I)$ is called **symmetric** if

$$(L_0u, v) = (u, L_0v), \text{ alla } u, v \in C_R^n(I),$$

where the inner product is given by the inner product in $L^2(I)$

$$(f,h) = \int_a^b f(x)\overline{h(x)}dx.$$

Provided that L_0 is a bijection and g is the Green's function for the boundary value problem

$$\begin{cases} Lu = f \\ Ru = 0 \end{cases},$$

we define

$$(Gf)(x) = \int_a^b g(x,t)f(t)dt, f \in C(I)$$

and

$$(\tilde{G}f)(x) = \int_a^b g(x,t)f(t) dt, f \in L^2(I).$$

Theorem 1.5. Assume that L_0 is a bijection. Then the following conditions are equivalent:

- 1. L_0 is symmetric
- 2. \tilde{G} is self-adjoint
- 3. $g(x,t) = \overline{g(t,x)}, x, t \in I$.

Proof. (1) \Leftrightarrow (2): L_0 is symmetric iff

$$(L_0Gf, Gh) = (Gf, L_0Gh), f, h \in C(I)$$

which is the same as

$$(f, Gh) = (Gf, h), f, h \in C(I).$$

This is equivalent to

$$(f, \tilde{G}h) = (\tilde{G}f, h), f, h \in L^2(I)$$

since C(I) is dense in $L^2(I)$ and \tilde{G} is a bounded linear operator on $L^2(I)$ ([1] example 4.2.4) whose restriction to C(I) is equal to G. L_0 being symmetric is thus equivalent to \tilde{G} being self-adjoint.

 $(2) \Leftrightarrow (3)$: We first observe that

$$(\tilde{G}^*f)(x) = \int_a^b \overline{g(t,x)} f(t) dt$$

([1] example 4.4.3). This implies that $\tilde{G} = \tilde{G}^*$ iff

$$\int_a^b (g(x,t) - \overline{g(t,x)}) f(t) dt = 0, f \in L^2(I).$$

Since g is continuous this means that $g(x,t) - \overline{g(t,x)} = 0$ for all $x,t \in I$ and so $g(x,t) = \overline{g(t,x)}$ for all $x,t \in I$.

Example 1: Consider the boundary value problem

$$\begin{cases} -u'' = f(x) \\ u(0) = u(1) = 0, \ 0 \le x \le 1. \end{cases}$$

This means that Lu = -u'', $R_1u = u(0)$ and $R_2u = u(1)$. The operator L_0 is symmetric since

$$(L_0 u, v) = \int_0^1 -u'' \bar{v} dx = \left[-u' \bar{v} \right]_0^1 + \int_0^1 u' \bar{v'} dx = \{ Ru = 0 \} =$$

$$=(u',v')=\overline{(v',u')}=\overline{(L_0v,u)}=(u,L_0v)$$

for all $u, v \in C_R^2([0, 1])$. This fact also follows from Theorem 1.5 by checking that L_0 is a bijection and that the Green's function is given by

$$g(x,t) = \begin{cases} t(1-x), & 0 \le t < x \le 1\\ (1-t)x, & 0 \le x \le t \le 1. \end{cases}$$

It easily follows that $g(x,t) = \overline{g(t,x)}$. The details are left as an exercise.

Theorem 1.6. Assume that L_0 is symmetric and is a bijection. Then the following statements are true:

- 1. 0 is not an eigenvalue for L_0 nor for \tilde{G} .
- 2. f is an eigenfunction for L_0 corresponding to the eigenvalue μ iff f is an eigenvalue for \tilde{G} corresponding to the eigenvalue $1/\mu$.

Proof. (1): $\mathcal{N}(L_0) = \{\mathbf{0}\}$ implies that L_0 has no eigenfunction corresponding to an eigenvalue zero.

Now assume that $f \in \mathcal{N}(\tilde{G})$. We will show that $f = \mathbf{0}$. For this take an arbitrary $\phi \in C_R^n(I)$. We obtain

$$0 = (\mathbf{0}, L_0 \phi) = (\tilde{G}f, L_0 \phi) = (f, \tilde{G}L_0 \phi) = (f, GL_0 \phi) = (f, \phi).$$

Since $C_R^n(I)$ is dense in $L^2(I)$ we can conclude that $f = \mathbf{0}$.

 $(2): \Rightarrow)$ From

$$\mathbf{0} \neq f = G(L_0 f) = G(\mu f) = \mu G f = \mu \tilde{G} f$$

it follows that f is an eigenfunction to \tilde{G} corresponding to the eigenvalue $1/\mu$.

←) We have

$$\int_{a}^{b} g(x,t)f(t)dt = \frac{1}{\mu}f(x) \quad \text{a.e. in} I.$$

Setting

$$h(x) = \mu \int_{a}^{b} g(x, t) f(t) dt, x \in I$$

it follows from Lebesgue's dominated convergence theorem (see [3]) that $h \in C(I)$. Moreover we have h(x) = f(x) a.e. in I and

$$h(x) = \mu \int_a^b g(x,t)h(t)dt, \ x \in I,$$

and hence we get $Gh = \frac{1}{\mu}h$. This yields

$$h = L_0(Gh) = L_0\left(\frac{1}{\mu}h\right) = \frac{1}{\mu}L_0h.$$

Since $h \neq 0$ in $C_R^n(I)$, h is an eigenfunction to L_0 corresponding to the eigenvalue μ . Thus h, which is equal to f in $L^2(I)$, is an eigenfunction to L_0 corresponding to the eigenvalue μ . This is the proper interpretation of the formulation in Theorem 1.6.2) and the proof of the theorem is complete.

Theorem 1.7. Assume that L_0 is symmetric and is a bijection. Moreover let $(\mu_n)_1^{\infty}$ denote the eigenvalues for L_0 counted with multiplicity and assume that $(e_n)_1^{\infty}$ is a corresponding sequence of orthonormal eigenfunctions. Then $(e_n)_1^{\infty}$ is an ON-basis for $L^2(I)$ and the solution to the equation

$$\begin{cases} Lu = f \\ Ru = 0 \end{cases},$$

where $f \in C(I)$, is given by

$$u = \sum_{1}^{\infty} \frac{1}{\mu_n} (f, e_n) e_n \quad (in \ L^2(I)).$$

Proof. The operator \tilde{G} is compact ([1] exemple 4.8.4) and the Hilbert-Schmidt theorem ([1] theorem 4.10.1) and Theorem 1.6 1) implies that $(e_n)_1^{\infty}$ is a complete ON-sequence for $L^2(I)$. From

$$f = \sum_{1}^{\infty} (f, e_n) e_n$$

in $L^2(I)$ Theorem 1.6 2) now implies that

$$u = Gf = \tilde{G}f = \sum_{1}^{\infty} (f, e_n)\tilde{G}e_n = \sum_{1}^{\infty} \frac{1}{\mu_n} (f, e_n)e_n$$

in
$$L^2(I)$$
.

Exempel 2: Consider the boundary value problem

$$\begin{cases} -u'' = f(x) \\ u(0) = u(1) = 0, \ 0 \le x \le 1. \end{cases}$$

Exemple 1 shows that the corresponding operator L_0 is symmetric and is a bijection. The eigenfunctions for L_0 are obtained as the non-trivial solutions to the equation

$$\begin{cases} -e''(x) = \mu e(x) \\ e(0) = e(1) = 0, \ 0 \le x \le 1 \end{cases}$$

and a simple calculation gives $e_n(x) = A \sin n\pi x$, where $A \neq 0$ and n = 1, 2, The sequence $(\sqrt{2} \sin n\pi x)_1^{\infty}$ is therefore an ON-basis for $L^2([0, 1])$.

Exempel 3: Wirtinger's inequality says that

$$\int_0^1 |u'(x)|^2 dx \ge \pi^2 \int_0^1 |u(x)|^2 dx$$

for all $u \in C^1([0,1])$ that satisfies u(0) = u(1) = 0. To show this we first let

$$u(x) = \sum_{1}^{\infty} a_n \sqrt{2} \sin n\pi x$$
 (in $L^2([0,1])$)

where

$$a_n = \int_0^1 u(x)\sqrt{2}\sin n\pi x dx.$$

Furthermore we have

$$\int_0^1 u'(x)\sqrt{2}\cos n\pi x dx = \left[u(x)\sqrt{2}\cos n\pi x\right]_0^1 + n\pi \int_0^1 u(x)\sqrt{2}\sin n\pi x dx = n\pi a_n$$

and using the fact that the sequence $(\sqrt{2}\cos n\pi x)_1^{\infty}$ is an ON sequence, Bessel's inequality ([1] theorem 3.7.2) yields the estimate

$$\int_0^1 |u'(x)|^2 dx \ge \sum_1^\infty n^2 \pi^2 |a_n|^2$$

where the RHS is greater than or equal to

$$\pi^2 \sum_{1}^{\infty} |a_n|^2 = \pi^2 \int_{0}^{1} |u(x)|^2 dx.$$

This gives one proof for Wirtinger's inequality.

References

- [1] L.Debnath/P.Mikusinski, Introduction to Hilbert Spaces with Applications 2nd ed., Academic Press 1999
- [2] P.Kumlin, A note on fixed point theory, Mathematics, Chalmers & GU 2002/2003
- [3] P.Kumlin, A note on L^p-spaces, Mathematics, Chalmers & GU 2002/2003