
TMA 401/MAN 670 Functional Analysis 2003/2004
Peter Kumlin
Mathematics
Chalmers & GU

1 Exercises

This is a collection of problems that has appeared in the course. Some of them has
been given on written examinations during the last five years.

1.1 Vector spaces

Key words: vector space, linear combination, linear independence, basis, dimension

1. Check if the following sets with the proposed addition ⊕ and multiplication by
scalar ¯ defines vector spaces:

(a) E =
�

+ ≡ {x ∈ �
: x > 0} and F =

�
with

x ⊕ y = xy for all x, y ∈ E

and
α ¯ x = xα for all α ∈ F, x ∈ E.

(b) E = � and F = � with

x ⊕ y = x + y for all x, y ∈ E

and
αx = (Re α)x for all α ∈ F, x ∈ E.

2. Let x be an element of a vector space and λ a scalar. Show that

(a) 0x = 0

(b) (−1)x = −x

(c) λ 6= 0 and λx = 0 implies x = 0

(d) x 6= 0 and λx = 0 implies λ = 0

3. Let E be a vector space such that there exist a basis with finitely many vectors.
Show that the dimension of E is uniquely defined.

4. Let x1, . . . , xn be a basis for a complex vector space E. Find a basis for E as a
real vector space.

5. Let x1, . . . , xn be a set of linearly dependent vectors in a complex vector space
E. Is this set linearly dependent in E if E is regarded as a real vector space?

6. Show that the functions fn(x) = enx, n = 1, 2, . . ., defined on
�

are linearly
independent.

7. Show that the functions fn(x) = cos nx, n = 1, 2, . . ., defined on [−π, π] are
linearly independent.

8. In C[−1, 1] consider the sets U and V consisting of odd and even functions in
C[−1, 1] respectively. Show that U and V are subspaces and that U

⋂
V = {0}.

Show that every f ∈ C[−1, 1] can be written in the form f = f1 + f2, where
f1 ∈ U and f2 ∈ V , and that this decomposition is unique.
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9. Let E = C([0, 1]). Show that

(a) if ak, k = 1, . . . , n are n distinct points in [0, 1] then the functions

x 7→ |x − ak|, k = 1, . . . , n

are linearly independent on E,

(b) the function
(x, y) 7→ |x − y|

on [0, 1] × [0, 1] cannot be written as a finite sum

Σn
i=1vi(x)wi(y),

where vi, wi ∈ E, i = 1, . . . , n.

10. Prove that the vector space C([0, 1]) has infinite dimension.

11. Prove that the vector space C∞(
�

) has infinite dimension.

12. Prove that the vector spaces lp are infinite-dimensional for p ∈ [1,∞).

13. Let l0 consist of all sequences (xn)∞n=1, xn ∈ �
, where at most finitely many xn:s

are different from 0. Show that l0 is a vector space with the usual addition and
multiplication with scalar operations for sequence spaces. Also give a basis for
l0.

14. Let F be a subspace of a vector space E. The coset of an element x ∈ E with
respect to F is denoted by x + F and is defined to be the set

x + F = {x + y : y ∈ F}.

Show that under the algebraic operations

(x + F ) + (y + F ) = (x + y) + F

α(x + F ) = αx + F

these cosets constitute the elements of a vector space. This vector space is called
the quotient space of E by F and is denoted by E/F . Its dimension is
called the codimension of F and is denoted by codim F . Now let E =

� 3 and
F = {(0, 0, z) : z ∈ � }. Find

(a) E/F

(b) E/E

(c) E/{0}

15. Show that C([c, d]) is a subspace of C([a, b]) (in a natural way) if [c, d] ⊂ [a, b].

16. Assume M and N are subspaces of a vector space V . When is M
⋃

N a subspace?

17. Let T : E → F be a linear mapping from the vector space E into the vector space
F . Show that N (T ) and R(T ) are vector spaces.

18. Show that linear mappings preserve linear dependence.

19. Let T be a linear bijection between two vector spaces E and F . Assume that E
is finite-dimensional. Show that also F is finite-dimensional and that dim E =
dim F .

20. The convex hull Ŝ of a set S is defined as the intersection of all convex sets
containing S.

(a) Show that Ŝ is convex.

(b) If S ⊂ R and R convex, show that Ŝ ⊂ R.
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(c) A convex combination of elements x1, . . . , xn of a vector space is a linear
combination Σaixi with ai ≥ 0 for each i and Σai = 1. If R is a convex
set, show that any convex combination of a finite number of elements of R
belongs to R.

(d) Show that for any set S, Ŝ equals the set of all convex combinations of
finitely many elements of S.
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1.2 Normed spaces

Key words: norm, convergence in normed space, equivalence of norms, open/closed
ball, open/closed set, closure of set, dense subset, compact set

1. Show that in any normed space

(a) a convergent sequence has a unique limit;

(b) if xn → x and yn → y then xn + yn → x + y;

(c) if xn → x and λn → λ (λn, λ are scalars) then λnxn → λx.

2. Let E be a normed space. Prove that

‖x‖ ≤ max(‖x − y‖, ‖x + y‖), x, y ∈ E.

Give an example of a normed space E and an x ∈ E, such that equality occurs
for a suitable y 6= 0.

3. Let x1, . . . , xn be linearly independent vectors in a normed space E. Show that
there exists a c > 0 such that

‖α1x1 + . . . + αnxn‖ ≥ c(|α1| + . . . + |αn|),

for all scalars αi, 1 ≤ i ≤ n. Conclude from this that any two norms on E are
equivalent, if E is finite dimensional.

4. Show that equivalent norms define the same opens sets and Cauchy sequences.

5. Show that the norms ‖ ‖1 and ‖ ‖∞ are not equivalent in the vector space C([0, 1])
where

‖f‖1 =

∫ 1

0

|f(t)| dt

and
‖f‖∞ = max

t∈[0,1]
|f(t)|

for f ∈ C([0, 1]).

6. Given a set X. A function d : X × X → [0,∞) is called a metric on X if d
satisfies the conditions

(a) d(x, y) = 0 iff x = y

(b) d(x, y) = d(y, x) for all x, y ∈ X

(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

Show that if E is a vector space with norm ‖ · ‖ then

d(x, y) = ‖x − y‖ x, y ∈ E

defines a metric on E.

7. Let (X, d) be a metric space. Show that d1 given by

d1(x, y) =
d(x, y)

1 + d(x, y)
for x, y ∈ X

is a metric on X. Show that the metrics d and d1 yield the same open sets.

8. Give an example of a metric on a vector space that is not given by a norm.

9. Show that the open balls B(x, r) in a normed space are open sets. Also show
that the closed balls are closed sets.
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10. A subset A of a vector space E is called convex if

αx + (1 − α)y ∈ A for all x, y ∈ A, α ∈ [0, 1].

If E is a normed space show that the closed and open unit balls B̄(0, 1) and
B(0, 1) are convex.

11. Set φ :
� 2 → [0,∞), where

φ(x, y) = (
√

|x| +
√

|y|)2.

Show that φ does not define a norm in
� 2.

12. Let U be a bounded open convex and symmetric (i.e. U = (−1)U) set in
� 2

containing the origin and set

‖(x, y)‖ = inf{λ > 0 : (x, y) ∈ λU},

where λU = {(λx, λy) : (x, y) ∈ U} for λ ∈ �
. Show that ‖ ‖ defines a norm on� 2. Conclude that all norms on

� 2 are given in this way.

13. Find a sequence (x1, x2, . . .) such that xn → 0 as n → ∞ but is not in any lp,
where 1 ≤ p < ∞. Find a sequence (x1, x2, . . .) which is in lp with p > 1 but not
in l1. Is lp \ lq = ∅ if p > q?

14. Give an example of a subspace in l2 that is not closed.

15. Let 1 ≤ r < p < 2r and assume that the sequence (x1, x2, . . .) satisfies

Σ∞
n=1n|xn|p < ∞.

Show that (x1, x2, . . .) ∈ lr.

16. Show that
lim

j→∞
Σ∞

n=1

xn

j + n
= 0

for all (x1, x2, . . .) ∈ l2.

17. Let f(x) = sinx for 0 ≤ x ≤ 1. Find a sequence of polynomials pn(x), 0 ≤ x ≤
1, n ∈ � of degree n, which converges to f in C([0, 1]).

18. Show that every continuous function f on [0, 1] can be uniformly approximated by
polynomials, i.e. for each ε > 0 there is a polynomial p such that maxt∈[0,1] |f(t)−
p(t)| < ε. This statement is known as the Weierstrass approximation theo-
rem1.

19. Show that if A is dense in B and B is dense in C then A is dense in C.

20. Prove or disprove: if A is dense in B then for any set C, A
⋂

C is dense in B
⋂

C.

21. Let E be a normed space. E is called separable if there exists a countable dense
subset in E. Show that

(a)
�

is separable

(b) lp is separable for p ∈ [1,∞)

(c) l∞ is not separable2

(d) C([0, 1]) is separable

1Hint: One way to prove the claim is to use the so called Bernstein polynomials, more precisely set

Bnf(x) = Σn
k=0

„

n

k

«

xk(1 − x)n−kf(
k

n
), x ∈ [0, 1], n = 1, 2, . . .

Show that Bnf → f in C([0, 1]) as n → ∞.
2Assume that it is separable and construct a function that has l∞-distance ≥ 1 to each function

in the supposed countable dense set.
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22. Let E be a normed space and (xn)∞n=1 a countable dense subset in E. Given
ε > 0 show that

E \ {0} ⊂
∞⋃

n=1

B(xn, ε‖xn‖).

23. Show that every finite set is compact.

24. Show that
� n and B̄(0, 1)

⋂{(x1, . . . , xn) : x1 < 1/2} are not compact sets using
the definition of compactness.

25. Construct a set in
� 2 which has finite area but is not relatively compact. Gen-

eralize to
� n.

26. Prove that any finite-dimensional subspace of a normed linear space is closed.

27. If S is a relatively compact set, prove that its convex hull is relatively compact.

28. Let F be a subspace of a normed space E and suppose x0 ∈ E \ F . Furthermore
suppose x0 possesses a nearest point in F (i.e. there is a y0 ∈ F such that
‖y − x0‖ ≥ ‖y0 − x0‖ for all y ∈ F ).

(a) Prove that there is an x1 ∈ E such that ‖x1‖ = 1 and ‖y − x1‖ ≥ 1 for all
y ∈ F .

(b) In addition, suppose Span({x0}
⋃

F ) = E. Show that every x ∈ E possesses
a nearest point in F .

29. (Riesz lemma) Suppose E is a normed space and let F be a proper closed
subspace of E. Furthermore let ε be a given positive real number. Show that
there is a vector x1 ∈ E such that ‖x1‖ = 1 and ‖y−x1‖ > 1− ε for every y ∈ F .

30. Let E be a normed space. Show that the unit sphere {x ∈ E; ‖x‖ = 1} is compact
if and only if E is of finite dimension.

31. Let F be a closed subspace of a normed space E, where ‖ · ‖ denotes the norm.
Show that ‖ · ‖0 defines a norm on the quotient space E/F if

‖x̃‖0 = inf
x∈x̃

‖x‖.

32. Let T be a mapping on a real normed space X satisfying

T (x + y) = T (x) + T (y) for all x, y ∈ X.

Show that
T (λx) = λT (x) for all λ ∈ R and x ∈ X

if T is continuous.

33. Let T : X → X be a mapping (not necessary linear) on a normed space X.
Moreover assume that there are real constants C,α, where α > 1, such that

‖T (x) − T (y)‖ ≤ C‖x − y‖α, for all x, y ∈ X.

Show that there exists a z ∈ X such that T (x) = z for all x ∈ X.
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1.3 Banach spaces

Key words: Cauchy sequence, complete space, Banach space, convergent/absolutely
convergent series, linear mapping, null space of a linear mapping, range and graph
of a mapping, continuous mapping, bounded linear mapping, completion of a normed
space, Lp-spaces

1. Prove that convergence in L2([0, 1]) implies convergence in L1([0, 1]).

2. For any n ∈ � + set

fn(x) =

{ √
n 0 ≤ x ≤ 1

n
0 1

n < x ≤ 1.

Prove that fn → 0 in L1([0, 1]) but not in L2([0, 1]).

3. Let f ∈ L1(
�

). Can we conclude that f(x) → 0 for |x| → ∞? Can we find
a, b ∈ �

such that |f(x)| ≤ b for |x| ≥ a?

4. Which of the following sequences of real functions (n ∈ � )

(a) fn = 1
nχ(0,n)

(b) fn = χ(n,n+1)

(c) fn = nχ[0, 1

n
]

(d) fn = χ[j2−k,(j+1)2−k] where 0 ≤ j < 2k and n = j + 2k

converges to 0

(a) uniformly on
�

(b) point-wise on
�

(c) almost everywhere on
�

(d) in L1(
�

).

Which of these modes of convergence implies which others?

5. Let f ∈ Lp(
�

) for p ∈ [1,∞) and λ > 0. Prove the inequality

|{x ∈ �
: |f(x)| > λ}| ≤ (

‖f‖p

λ
)p,

where |A| denotes the (Lebesgue) measure of the set A ⊂ �
.

6. Let f ∈ C[0, 1]. Show that

‖f‖p → ‖f‖∞ for p → ∞.

7. Consider the set of all rational numbers p/q ∈ (0, 1) with denominator q ≤ n;
call them rn1, rn2, . . . , rnK (where K depends on n). Define a function gn by

gn(x) = ΣK
i=1φn(x − rni),

where φn(u) = 1−enu for |u| ≤ e−n, φn(u) = 0 for |u| > e−n. Sketch the graph of

gn. Show that gn ∈ C([0, 1]),
∫ 1

0
|gn|2 dx → 0 as n → ∞, and and gn(x) → χ � (x)

for rational x.

8. Let t > 0 and define the operator

Pt : L1(
� n) → L1(

� n)

by the equation

(Ptf)(x) =

∫

�
n

e−|x−y|/2tf(y)dy.

Prove that PsPt = Ps+t
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9. Show that if (xn)∞n=1 is a Cauchy sequence and has a convergent subsequence
then (xn)∞n=1 is convergent.

10. Assume that (xn)∞n=1 is a sequence in a Banach space such that for any ε > 0
there is a convergent sequence (yn)∞n=1 such that ‖yn − xn‖ < ε for all n. Prove
that (xn)∞n=1 is convergent. Give an example to show that the statement becomes
false if Banach space is replaced by normed space.

11. Let l∞c denote the vector space with all convergent sequences (xn)∞n=1 of complex
numbers equipped with the norm

‖(xn)∞n=1‖l∞
c

= sup
n

|xn|.

Show that the space l∞c is complete.

12. Define C1
2 ([0, 1]) to be the space of continuously differentiable functions on [0, 1],

with norm ‖f‖ = (
∫ 1

0
(|f |2 + |f ′|2) dx)1/2. Show that this is a proper definition of

norm. Is this normed space complete?

13. What conditions must the function r satisfy in order that

‖f‖ = sup{|f(x)r(x)| : 0 ≤ x ≤ 1}

should define a norm on the vector space C([0, 1])?

14. Let BC([0,∞)) be the set of functions continuous for x ≥ 0 and bounded. Show
that for each a > 0, ‖f‖a = (

∫∞

0
e−ax|f(x)|2 dx)1/2 defines a norm on BC([0,∞)),

and ‖ · ‖a is not equivalent to ‖ · ‖b if 0 < b < a. What about the case a = 0?

15. Show that every finite-dimensional normed space is complete.

16. Set fk(x) =
sin kx

k2
, 0 ≤ x ≤ 1, k ∈ � +. Prove that the series Σ∞

k=1fk converges

in C([0, 1]).

17. Set for any n ∈ � +, fn(x) = xn − xn+1 and gn(x) = xn − x2n if 0 ≤ x ≤ 1. Is
any of the sequences (fn)∞n=1 and (gn)∞n=1 convergent in C([0, 1])?

18. Let M = {x ∈ C([0, 1]) : x(2−n) = 0 all n ∈ � +}. Prove that M is a closed
subset of C([0, 1]).

19. Let M = {(xn)∞n=1 ∈ c0 : Σ∞
n=12

−nxn = 0} ⊂ c0 ≡ {(xn)∞n=1 ∈ l∞ : limn→∞ xn =
0}. Show that M is a closed subspace in c0.

20. Let E denote a normed space of finite dimension and let e1, . . . , en be a basis of
E. Set

f(x) = Σn
k=1xkek, x = (x1, . . . , xk) ∈ � n.

Show that f is continuous. Conclude from this that any two norms on E are
equivalent.

21. Let E be a normed space and assume that E 6= {0}. Prove that there do not
exist bounded linear operators A and B on E such that AB − BA = I.

22. Set (Ax)(t) = x′(t) and (Bx)(t) = tx(t), 0 < t < 1, for x ∈ C∞(]0, 1[). Prove
that AB − BA = I. Is it possible to find a norm on C∞(]0, 1[) such that A and
B are bounded operators with respect to this norm3?

23. Let E and F be normed spaces and T : E → F a continuous mapping. Show
that the T (A) is compact in F if A is a compact set in E.

24. Let T : E → �
be a continuous mapping from a normed space E. Moreover let

A be a compact set in E. Show that T attains its maximum and minimum on A.

3Hint: Show that AnB − BAn = nAn−1 for n = 1, 2, . . .
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25. Let A : X → X be a continuous mapping and assume Ax 6= 0 for all x ∈ X.
Show that the mapping B : x 7→ Ax/‖Ax‖ is continuous on X.

26. Find the norm of the linear functional

(x, y) 7→ x − 7y

on
� 2 with respect to the norms lp for p = 1, 2 and ∞.

27. For what values of the constant a does

u 7→
∫ 1

0

xau(x) dx

define a mapping C([0, 1]) → � ? For what values of a does it define a mapping
L2([0, 1]) → � ?

28. Show that the equation

{

(Af)(x) =
∫ +∞

−∞ f(y)e−|x−y| dy, x ∈ �

f ∈ L2(
�

)

defines a bounded linear operator A on L2(
�

).

29. Prove that any linear mapping from a finite-dimensional vector space into an
arbitrary vector space must be continuous.

30. Let E be a normed space and L a linear functional on E. Furthermore, suppose
there is a unit vector x0 ∈ E such that ‖x0 − y‖ ≥ 1 for every y ∈ N (L). Prove
that |Lx0| = ‖L‖.

31. Find all linear mappings of � n into � m for n,m ∈ � +.

32. Let A,B be two linear operators defined on a vector space E. Show that E must
be infinite-dimensional if

AB = I 6= BA,

where I denotes the identity mapping on E. Give an example of such operators
A and B on a vector space E.

33. Let E be a vector space and f : E → �
a linear mapping. Suppose x0 ∈ E and

f(x0) 6= 0. Prove that any x ∈ E may be written as x = y + αx0, where α is a
scalar and y ∈ N (f). Show that this representation is unique.

34. Let f and g be two functionals on a vector space such that N (g) ⊂ N (f). Prove
that f = αg, where α is a scalar.

35. Show that for any linear operator A on a n-dimensional vector space E, there are
scalars α0, . . . , αn2 , not all of them zero, such that

Σn2

k=0αkAk

is the zero operator.

36. Let B and C be linear operators on a finite-dimensional vector space E and
suppose N (B) ⊂ N (C). Show that there is a linear operator A on E such that
C = AB.

37. Let E be a vector space of finite dimension and suppose A : E → E is a linear
operator. Prove that N (A) = {0} if and only if R(A) = E. Show that this is not
true for vector spaces of infinite dimension.

38. Let E be a real normed space and let T : E → �
be a linear functional. Assume

that N (T ) 6= E. Show that for all x ∈ E

min
y∈N (T )

‖x − y‖ =
|Tx|
‖T‖ .
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39. Show that the operator T on C([0, 1]), where

(Tf)(t) = tf(t), t ∈ [0, 1],

is a bounded linear operator on C([0, 1]).

40. Let An, A,Bn, B be bounded linear operators on a Banach space X. Show that
An → A and Bn → B in B(X,X) implies AnBn → AB in B(X,X).

41. Let A : X → X be a bounded linear operator on a Banach space X. Show
that Σ∞

n=0
1
n!A

n converges in B(X,X). Denote its sum by eA. Show that for any
integer n > 0, (eA)n = enA. Show that eO = I where O is the zero operator.
Show that eA is always invertible (even if A is not) and its inverse operator is
e−A. Show that if AB = BA, then eA+B = eAeB . Show that eA+B = eAeB is
not true in general.

42. Let A,B be invertible bounded linear operators on a Banach space X with
‖B−1‖‖A − B‖ < 1. Show that if

{
Ax = b
By = b

then

‖x − y‖ ≤ ‖B−1‖‖A − B‖
1 − ‖B−1‖‖A − B‖‖y‖.

Moreover also show that

‖x − y‖ ≤ ‖B−1‖2‖A − B‖
1 − ‖B−1‖‖A − B‖‖b‖.

43. Let T be a bounded linear operator from a normed space E onto a normed space
F . Assume that there is a constant C > 0 such that

‖Tx‖ ≥ C‖x‖

for all x ∈ E. Show that the inverse operator T−1 : F → E exists as a mapping
and is a bounded linear operator.

44. Let T : C([0, 1]) → C([0, 1]) be defined by

(Tf)(t) =

∫ t

0

f(s) ds.

Find R(T ) and T−1 : R(T ) → C([0, 1]) satisfying T−1T = IC([0,1]). Is T−1 linear
and bounded?

45. The operator A : C([0, 1]) → C([0, 1]) is defined by the equation

(Af)(t) = f(t) +

∫ t

0

f(s) ds 0 ≤ t ≤ 1.

Prove that N (A) = {0} and R(A) = C([0, 1]). Finally determine the inverse A−1

of A and show that A−1 is a bounded operator.

46. Let A be an r×n-matrix with real entries. Consider A as a linear mapping from� n into
� r. Calculate or give an upper bound for the operator norm of A in

(a) B(l1, l1)

(b) B(l∞, l∞)

47. Let F be a subspace of a vector space E and let f be a functional on E such that
f(F ) is not the whole scalar field of E. Show that f(x) = 0 for all x ∈ F .
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48. Let k ∈ � + and set Lk(f) =
∫ π

0
f(t) sin kt dt for all f ∈ C([0, π]). Prove that

‖Lk‖ = 2 for all k.

49. Let

Lf =

∫ 1/2

0

f(t) dt −
∫ 1

1/2

f(t) dt, f ∈ C([0, 1]).

Prove that ‖L‖ = 1. Prove that there does not exist any f ∈ C([0, 1]) such that
‖f‖ = 1 and |Lf | = 1.

50. Let E be a normed space and A : E → � a bounded linear functional. Suppose
there exists a vector x0 ∈ E such that ‖x0‖ = 1 and ‖x0−x‖ ≥ 1 for all x ∈ N (A).

Show that |Ax0| = ‖A‖. Moreover, let F = {x ∈ C([0, 1]) :
∫ 1/2

0
x(t) dt =

∫ 1

1/2
x(t) dt}. Show that if x0 ∈ C([0, 1]) and ‖x − x0‖ ≥ 1 for all x ∈ F then

‖x0‖ > 1.

51. Show that

L(f) =

∫ 1

0

1√
x

f(x) dx

defines a bounded linear functional on C([0, 1]).

52. Show that

L(f) =

∫ 1

0

1
3
√

x
f(x) dx

defines a bounded linear functional on L2([0, 1]).

53. (Non-orthogonal projections) A bounded linear operator P on a Banach space X
will be called a projector4 if P 2 = P .

(a) Show that I −P is a projector if P is. Show that if x ∈ R(P ) then Px = x,
and if x ∈ R(I − P ) then Px = 0.

(b) Show that for any projector P on a Banach space X, the range R(P ) of P
is a closed subspace, and is therefore itself a Banach space.

(c) Show that any x ∈ X can be uniquely expressed in the form x = u + v with
u ∈ R(P ) and v ∈ R(I − P ).

54. Let T be a linear mapping from a normed space V into a normed space W . Show
that the range R(T ) is a subspace of W . Show that the null-space (or kernel)
N (T ) is a subspace of V . If T is bounded, is it true that T (V ) and/or N (T ) is
closed?

55. Show that if (x
(n)
1 , x

(n)
2 , . . .) → (x1, x2, . . .) in lp, then x

(n)
k → xk in

�
for all k ∈

� . If x
(n)
k → xk in

�
for all k ∈ � , is it true that (x

(n)
1 , x

(n)
2 , . . .) → (x1, x2, . . .)

in lp?

56. Let T be the linear mapping from C∞(
�

) into itself given by Tf = f ′. Show
that T is surjective. Is T injective?

57. Consider the mapping T from C[0, 1] into itself, given by

Tf(t) =

∫ t

0

f(s) ds.

We assume that C[0, 1] is equipped with the sup-norm. Show that T is bounded
and find ‖T‖. Show that T is injective and find T−1 : T (C[0, 1]) → C[0, 1]. Is
T−1 bounded?

4Compare projections that are self-adjoint and satisfies P 2 = P . By projection we mean orthogonal
projection.
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58. Let T be a linear operator T : L2(
�

) → L2(
�

) satisfying that f ≥ 0 implies that
Tf ≥ 0. Show that

‖T (|f |)‖ ≥ ‖Tf‖
for all f ∈ L2(

�
). Show that T is bounded.

59. Define, for h ∈ �
, the operator τh on L2(

�
) by

τhf(x) = f(x − h).

Show that τh is bounded.

60. Let V be a Banach space and let T ∈ B(V, V ) such that T−1 exists and belongs
to B(V, V ). Show that if ‖T‖ ≤ 1 and ‖T−1‖ ≤ 1, then

‖T‖ = ‖T−1‖ = 1,

and ‖Tf‖ = ‖f‖ for all f ∈ V .

61. Consider the operator

Af(x) =
1√
π

∫ x

0

f(t)√
x − t

dt, x ∈ [0, 1]

whenever this expression makes sense. Show that Af ∈ L∞[0, 1] if f ∈ Lp[0, 1],
p > 2. Find the operator B = A2, i.e. find the kernel k(x, t) such that

Bf(x) =

∫ x

0

k(x, t)f(t) dt

for f ∈ Lp[0, 1], p > 2. Show that B : Lp[0, 1] → L∞[0, 1], 1 ≤ p ≤ ∞ is bounded.
Solve the equation

(I − A)f(x) = 1

formally by a Neumann series, and express f as

f(x) = g(x) + Ah(x)

where g and h are known functions. Insert and show that this formal solution is
a solution.

12



1.4 Fixed point techniques

Key words: contractions, Banach’s fixed point theorem, Brouwer’s fixed point theorem,
Schauder’s fixed point theorem

1. Show that the Banach fixed point theorem is valid for metric spaces (X, d) as
follows: Let (X, d) be a complete5 metric space and let F be a closed set in X.
Assume that T : F → F is a contraction mapping on F . Then T has a unique
fixed point.

2. Consider the metric space (X, d), where X = [1,∞) and d the usual distance.
Let T : X → X be given by

T (x) =
x

2
+

1

x
.

Show that T is a contraction and find the minimal contraction constant. Find
also the fixed point.

3. Let T be a mapping from a metric space (X, d) into itself such that

d(T (x), T (y)) < d(x, y)

for all x, y ∈ X, x 6= y. Show that T has at most one fixed point. Show6 that T
not necessarily have a fixed point.

4. A mapping T :
� → �

satisfies a Lipschitz-condition with constant k if

|T (x) − T (y)| ≤ k|x − y|

for all x, y ∈ �
.

(a) Is T a contraction?

(b) If T is a C1–function with bounded derivative, show that T satisfies a
Lipschitz-condition.

(c) If T satisfies a Lipschitz-condition, is T then a C1-function with bounded
derivative?

(d) Assume that |T (x) − T (y)| ≤ k|x − y|α for some α > 1. Show that T is a
constant.

5. We consider the vector space
� n with l1-norm and a mapping T :

� n → � n

given by Tx = Cx + b, where C = (cij) is an n × n-matrix and b ∈ � n. Show
that T is a contraction if

Σn
i=1|cij | < 1 for all j = 1, 2, . . . , n.

If we instead use the l2-norm, show that T is a contraction if

Σn
i=1Σ

n
j=1|cij |2 < 1.

6. Use Banach fixed point theorem to find a root (given to four decimal places) of
the equation

x2 − sin2 x − 1 = 0

in the interval [1,
√

2].

7. Suppose 0 < L <
√

(
√

5 − 1)/2. Show that there exists a unique u ∈ C([0, 1])

such that

u(x) =

∫ L

0

√

1 + (x − y)2 cos(u(y)) dy + sin(e−x), 0 ≤ x ≤ L.

5see footnote to Baire’s theorem below
6Hint: e.g. consider T (x) = x + 1

x
for x ∈ [1,∞).
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8. Show that the equation

u(x) =

∫ p

0

√

1 + (x − y)2 cosu(y) dy + sin(πe−4x2

)

has a unique solution in C([0, p]) for p > 0 small enough. Give an upper estimate
on p?

9. Suppose λ ∈ � . Solve the equation
{

u(x) − λ
∫ 1

0
xyu(y) dy = f(x) 0 ≤ x ≤ 1

u ∈ C([0, 1])

where f ∈ C([0, 1]) is a given function.

10. Suppose λ ∈ � . Solve the equation
{

u(x) − λ
∫ x

0
xyu(y) dy = f(x) 0 ≤ x ≤ 1

u ∈ C([0, 1])

where f ∈ C([0, 1]) is a given function.

11. Suppose f ∈ C([0, 1]). Prove that the following equation possesses a unique
solution where

{

u(x) − 5
∫ 1−x

0
u(y)min(x, y) dy = f(x) 0 ≤ x ≤ 1

u ∈ C([0, 1]).

12. Let P be the set of all ordered pairs f = (f1, f2) of real-valued continuous func-
tions on [0, 1]. Show that P is a Banach space if we define addition and scalar
multiplication in the obvious way, and define ‖f‖P = max{‖f1‖∞, ‖f2‖∞}. Show
that the coupled integral equations







u(x) = λ
∫ 1

0
exy u(y)

1+u2(y)+v2(y) dy

v(x) = µ
∫ 1

0
exy u(y)v(y)

1+u2(y)+v2(y) dy

have no nontrivial solutions if |λ| < 1/2e and |µ| < 1/e.

13. Consider the equation7

3u(x) = x + (u(x))2 +

∫ 1

0

|x − u(y)|1/2 dy.

Show that it has a continuous solution u satisfying 0 ≤ u(x) ≤ 1 for 0 ≤ x ≤ 1.

14. Let S be the set {f ∈ C([0, 1]) : ‖f‖∞ ≤ 1, f(0) = 0, f(1) = 1} and the operator
T : S → S defined by (Tf)(x) = f(x2). Show that S is a closed bounded convex
set and that T is a continuous operator with no fixed point.

15. Let c0 denote the vector space

c0 = {(xn)∞n=1 ∈ l∞ : lim
n→∞

xn = 0}

with the norm
‖(xn)∞n=1‖c0

= max
n

|xn|.
Define T : c0 → c0 by T ((xn)∞n=1) = (zn)∞n=1, where

{
z1 = 1

2 (1 + ‖(xn)∞n=1‖)
zn = (1 − 2−n)xn−1, n ≥ 2

Show that T maps the closed unit ball in c0 into itself and that

‖T (x) − T (y)‖ < ‖x − y‖
for all x, y, x 6= y, in the unit ball in c0. Moreover, show that T have no fixed
points in the unit ball in c0.

7Hint: Krasnoselskii’s fixed point theorem
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16. Let T denote the mapping (x, y) 7→ (x + y, y − (x + y)3) on
� 2. Show that T

is an odd mapping, i.e. T (−x,−y) = −T (x, y), and that (0, 0) is the only fixed
point of T . Moreover show that (2,−4) and (−2, 4) are fixed points of T 2. Can
T be a contraction?

17. T denote the mapping (x, y) 7→ (y1/3, x1/3) on
� 2. What are the fixed points of

T? What happens when you iterate, starting from various places in
� 2 (find out

by numerical experiments)? In what regions is T a contraction?

18. Let T be a contraction on a Banach space E, i.e.

‖Tx − Ty‖ ≤ α‖x − y‖

for all x, y ∈ E for some α ∈ (0, 1), and assume that S is a mapping on E such
that ‖Tx − Sx‖ ≤ λ for all x ∈ E for some constant λ > 0. Show that

‖Tnx − Snx‖ ≤ λ
1 − αn

1 − α

for n ∈ � +. Show that if S has a fixed point y then

‖x − y‖ ≤ λ
1

1 − α
,

where x is the unique fixed point for T . Finally show that if yn = Sny0 then

‖x − yn‖ ≤ 1

1 − α
(λ + αn‖y0 − Sy0‖),

provided x is the fixed point for T . What is the significance of this formula in
applications?

19. Consider the equation

x(t) − µ

∫ 1

0

k(t, s)x(s) ds = v(t), t ∈ [0, 1], (1)

where k ∈ C([0, 1] × [0, 1]) and v ∈ C([0, 1]). Moreover assume that

max
(t,s)∈[0,1]×[0,1]

|k(t, s)| ≤ c.

Show that (1) has a unique solution x ∈ C([0, 1]) provided |µ|c < 1 using the
iterative sequence

xn+1(t) = v(t) + µ

∫ 1

0

k(t, s)xn(s) ds. (2)

Next set

Sx(t) =

∫ 1

0

k(t, s)x(s) ds

and
zn+1 = µSzn.

Choosing x0 = v show that (2) yields the so called Neumann series

x = lim
n→∞

xn = v + µSv + µ2S2v + µ3S3v + . . .

Show that in the Neumann series we can write

Snv(t) =

∫ 1

0

k(n)(t, s)v(s) ds, n = 1, 2, 3, . . .

where the so called iterated kernel k(n) is given by

k(n)(t, s) =

∫ 1

0

· · ·
∫ 1

0

k(t, t1)k(t1, t2) · · · k(tn−1, s) dt1 · · · dtn−1.
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Show that the solution of (1) can be written

x(t) = v(t) + µ

∫ 1

0

k̃(t, s, µ)v(s) ds

where
k̃(t, s, µ) = Σ∞

j=0µ
jk(j+1)(t, s).

20. Use the methods in the above problem to solve

x(t) − µ

∫ 1

0

cx(s) ds = v(t), t ∈ [0, 1]

where c is a constant.

21. (a) A nonlinear version of the Volterra operator is defined as follows: (Lu)(x) =
∫ x

0
K(x, y)f(y, u(y)) dy where K and f are continuous functions, and |f(y, u)−

f(x, v)| ≤ N |u − v| for all u, v, x, y where N is a constant. Then L maps
C([0, T ]) into itself for any T > 0. Give an example to show that L is not a
contraction on C([0, T ]) with the usual norm ‖u‖ = sup |u(x)|.

(b) Show that for any a > 0, ‖u‖a = sup{e−ax|u(x)| : 0 ≤ x ≤ T} defines
a norm on C([0, T ]) which is equivalent to the usual norm. Deduce that
C([0, T ]) with the norm ‖ · ‖a is a Banach space.

(c) Set M = max{|K(x, y)| : 0 ≤ x, y ≤ T}. Show that ‖Lu − Lv‖a ≤
MN/a(1 − e−aT )‖u − v‖a for all u, v ∈ C([0, T ]). Deduce that for any
T > 0 the integral equation u = Lu + g, where g is a given continuous
function, has a unique solution.

22. Let f : � → � be a C1-mapping and assume that |f ′(x)| ≤ c < 1 for all x ∈ � .
Show that g : � → � is surjective , where g(x) = x + f(x).

23. Let X and Y be Banach spaces and let T : X → Y be a mapping having the
following property: There exists a number C > 0 such that for any x, y ∈ X we
have

|T (x + y) − T (x) − T (y)| ≤ C.

(a) Show that there exists a unique additive8mapping9 S : X → Y such that
T − S is bounded in the sup-norm.

(b) If T is continuous, prove that S is continuous and linear.

24. (Newton’s iteration) Let f be a real C2-function on an interval [a, b], and let
ξ ∈ (a, b) be a simple zero of f . Show that Newton’s method

xn+1 = T (xn) ≡ xn − f(xn)

f ′(xn)

is a contraction in some neighborhood of ξ.

25. (Halley’s iteration) In 1694 Edmund Halley, well-known for first computing the
orbit of the Halley comet, presented the following algorithm for computing roots
of a polynomial. Show that if f is a real C3-function on an interval [a, b], and if
ξ ∈ (a, b) is a simple zero of f then the algorithm

xn+1 = T (xn) ≡ xn − f(xn)

f ′(xn) − f ′′(xn)f(xn)
f ′(xn)

is a contraction in some neighborhood of ξ.

8S additive means that
S(x + y) = S(x) + S(y)

for all x, y ∈ X.
9Hint: Show that S(x) = limn→∞

1

2n T (2nx) does the job.
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26. For each of the following sets give an example of a continuous mapping of the set
into itself that has no fixed points:

(a) the real line
�

(b) the interval (0, 1]

(c) the set [0, 1]
⋃

[2, 3]

27. Give an example of a mapping of the closed interval [0, 1] into itself that has no
fixed points (and hence is not continuous).

28. Let f : S1 → �
be a continuous function, where S1 denotes the unit circle

centered at the origin. Show that there is an x ∈ S1 such that f(x) = f(−x).
This result is called the Borsuk-Ulam theorem for the circle.

29. Let A and B be two bounded plane figures. Show that there is a line dividing
each into two parts of equal area.

30. Let K be a closed disc in the plane
� 2 and let C be its boundary circle. Assume

that the function f is a continuous mapping K → � 2 such that f |C = I and that
g is a continuous mapping K → K. Show that there is a point p ∈ K such that
f(p) = g(p).

31. Prove Baire’s theorem [ Let X be a complete10 metric space.

(a) If {Un}∞n=1 is a sequence of open dense subsets of X, then
⋂∞

n=1 Un is dense
in X.

(b) X is not a countable union of nowhere dense sets.]

32. Use Baire’s theorem to show the existence of f ∈ C([0, 1]) that is nowhere differ-
entiable. [Hint: Consider the sets En of all f ∈ C([0, 1]) for which there exists
x0 ∈ [0, 1] (depending on f) such that

|f(x) − f(x0)| ≤ n|x − x0|

for all x ∈ [0, 1]. Show that En is nowhere dense in C([0, 1]).]

33. Prove Banach-Steinhaus theorem [Suppose X is a Banach space and Y is a
normed space and that A ⊂ B(X,Y ). Moreover assume that

sup
T∈A

‖Tx‖ < ∞ for all x ∈ X.

Then
sup
T∈A

‖T‖ < ∞.]

34. Use Banach-Steinhaus theorem11 to show the existence of a continuous function
on [−π, π] such that its Fourier series diverges at 0.

35. Prove Perron’s theorem, i.e. prove that an n × n-matrix, whose elements are
all positive, has at least one positive eigenvalue and that the elements of the
corresponding eigenvector are all positive.

36. A linear integral operator with a positive kernel is a natural analogue of the
positive matrix in Perron’s theorem. Use Schauder’s theorem to prove that an
integral operator with positive continuous kernel has a positive eigenvalue.

10For the definition of a metric space X with metric d see exercise 6 in the section ”normed spaces”.
We say that a set A ⊂ X is open if for each x ∈ A there is an r > 0 such that {y ∈ X : d(x, y) < r} ⊂ A.
A set B ⊂ X is closed if its complement Bc is an open set. Given a subset E of X. The intersection
of all closed sets in X containing E is a closed set, is called the closure of E and is denoted E. The
union of all open sets in X contained in E is an open set, is called the interior of E and is denoted by
E0. We say that a set E in X is dense in X if E = X and we say that E is nowhere dense if (E)0 = ∅.
Finally, a metric space is called complete if for each sequence {xn} ⊂ X such that d(xn, xm) → 0 as
n, m → ∞ there exists an x such that d(xn, x) → 0 as n → ∞.

11Hint: Let Tnf denote the n–th partial sum of the Fourier series of f .
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37. Let T : B̄(0, 1) → B̄(0, 1) where B̄(0, 1) is the closed unit ball in
� n centered at

the origin. Assume that
|T (x) − T (y)| ≤ |x − y|

for all x, y ∈ B̄(0, 1) where | · | denotes the Euclidean distance. Show that T has
a fixed point using

(a) Brouwder’s fixed point theorem

(b) Banach’s contraction theorem12

38. Prove Arzela-Ascoli’s theorem [Let A ⊂ C([0, 1]). It follows that that A is
compact if and only if

(a) (uniform boundedness) there exists an M < ∞ such that

sup
x∈[0,1], f∈A

|f(x)| ≤ M

and

(b) (equicontinuity) for all ε > 0 there exists a δ > 0 such that

|f(x) − f(y)| < ε

for all x, y ∈ [0, 1] with |x − y| < δ and all f ∈ A.]

39. Let M be a bounded set in C([0, 1],not necessarily compact. Show that the set
of all functions F (x) =

∫ x

0
f(t) dt with f ∈ M is relatively compact.

40. Prove Sperner’s lemma Let ∆ be a closed triangle with vertices v1, v2, v3 and
let τ be a triangulation of ∆. This means that τ = {∆i}i∈I where ∆i are closed
triangles with the properties

(a) ∆ =
⋃

i∈I ∆i

(b) For every i, j ∈ I, i 6= j, we have

∆i

⋂

∆j =







∅ or
common vertex or
common side

Moreover let V denote the set of all vertices of the triangles ∆i and let c : V →
{1, 2, 3} be a function that satisfies the following conditions:

(a) c(vi) = i for i = 1, 2, 3

(b) v ∈ V ⋂ vivj ∈ {i, j} for i, j ∈ {1, 2, 3} where vivj denotes the line segment
between vi and vj .

Then there exists a triangle ∆i such that the vertices of the triangle take different
values.

41. Prove Brouwer’s fixed point theorem in a special case13 (n=2): Let T : K → K
be a continuous mapping where K denotes the set {(x1, x2, x3) ∈

� 3 : Σ3
i=1xi =

1, xi ≥ 0 all i}. Then T has a fixed point.

12Hint: Consider Tn = (1 − 1

n
)T .

13Consider a sequence of finer and finer triangulations of K and make use of the function c : K →
{1, 2, 3} defined by

c( � ) = min{i : (T ( � ))i < xi}

where � = (x1, x2, x3). Note that the function c is well-defined provided T has no fixed point, and
apply Sperner’s lemma.
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42. Let (an)∞n=1 be a bounded sequence, i.e. (an)∞n=1 ∈ l∞. Show, by using Banach’s
fixed point theorem14, that there exists a bounded sequence (xn)∞n=1 that solves
the equations

xn−1 + 4xn + xn+1 = an, n = 1, 2, . . . ,

where x0 = 1.

14Consider the mapping

xn 7→
1

4
(an − xn−1 − xn+1), n = 1, 2 . . . .
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1.5 Hilbert spaces

Key words: inner product, inner product space, polarization identity, Hilbert space,
orthogonality, strong/weak convergence, orthonormal sequence, Gram–Schmidt or-
thonormalization process, complete sequence, orthogonal complement, convex set, or-
thogonal projection and decomposition, separable Hilbert space

1. Let z1, . . . , zn be complex numbers. Show that

|z1 + . . . + zn| ≤
√

n‖(z1, . . . , zn)‖.

2. Let x, y be vectors in a complex vector space with inner product, and assume
that

‖x + y‖2 = ‖x‖2 + ‖y‖2.

Does this imply that 〈x, y〉 = 0?

3. Let H be a Hilbert space. Show that

‖x − z‖ = ‖x − y‖ + ‖y − z‖

if and only if y = αx + (1 − α)z for some α ∈ [0, 1].

4. Let ‖ · ‖ denote the norm in a Hilbert space. Prove that

‖x + y‖ ‖x − y‖ ≤ ‖x‖2 + ‖y‖2

and
‖x + y‖2 − ‖x − y‖2 ≤ 4‖x‖ ‖y‖.

5. Let E be an inner product space. Show that for x, y ∈ E, x ⊥ y if and only if
‖αx + βy‖2 = ‖αx‖2 + ‖βy‖2 for all scalars α and β.

6. Show that C([0, 1]) (equipped with the sup-norm) is not an inner product space.

7. Prove that any complex Banach space with norm ‖·‖ satisfying the parallelogram
law is a Hilbert space with the inner product

〈x, y〉 =
1

4
[‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2],

and ‖x‖2 = 〈x, x〉.

8. Let T : E → E be a bounded linear operator on a complex inner product space.
Show that T = 0 if 〈Tx, x〉 = 0 for all x ∈ E. Show that this does not hold in
the case of real inner product spaces.

9. Suppose xn → x and yn → y in a Hilbert space H and αn → α in � . Prove that

(a) xn + yn → x + y

(b) αnxn → αx

(c) 〈xn, yn〉 → 〈x, y〉
(d) ‖xn‖ → ‖x‖

10. Suppose xn
w→ x and yn

w→ y in a Hilbert space H and αn → α in � . Prove or
disprove that

(a) xn + yn
w→ x + y

(b) αnxn
w→ αx

(c) 〈xn, yn〉 → 〈x, y〉
(d) ‖xn‖ → ‖x‖
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11. Let (en)∞n=1 be an ON-basis for H. Assume that the sequence (fn)∞n=1 in H
satisfies the conditions ‖fn‖ = 1 and fn ∈ {e1, e2, . . . , en}⊥ for n = 1, 2, . . ..

Show that fn
w→ 0.

12. Suppose xn
w→ x in a Hilbert space H. Show15 that there is a positive constant

M such that
sup

n
‖xn‖ ≤ M.

13. Let (xn)∞n=1 be a bounded sequence, i.e. supn ‖xn‖ ≤ M , in a separable Hilbert
space H. Show that there is a subsequence (xnk

)∞k=1 and an x ∈ H such that

xnk

w→ x.

What happens if H is not separable?

14. Suppose xn
w→ x in a Hilbert space H. Show that there exists a subsequence

(xnk
)∞k=1 of (xn)∞n=1 such that

1

m
Σm

k=1xnk
→ x i H,

d̊a m → ∞.

15. Consider
� n as a Hilbert space with the standard inner product and the corre-

sponding norm, i.e. the Euclidean metric. Assume that S is a closed convex set
in

� n and that for each x ∈ � n there exists a unique y ∈ S such that

‖x − y‖ = sup
z∈S

‖x − z‖.

Show that S consists of a single element.

16. Assume that M is a closed subspace of a Hilbert space H. Let {xn}∞n=1 be a
sequence converging to x in H. Moreover let xn = yn + zn, n = 1, 2, . . ., be
the orthogonal decomposition of xn with yn ∈ M and zn ∈ M⊥. Show that
yn converges to y and zn converges to z where x = y + z is the orthogonal
decomposition of x.

17. What is the orthogonal complement of all even functions in L2([−1, 1])?

18. Let M be the subset {(xn)∞n=1 : x2n = 0 for all n ∈ � +} in l2. Give M⊥ and
M⊥⊥.

19. Let A be a subset of an inner product space. Show that

A⊥⊥ = SpanA.

20. Let A and B, ∅ 6= A ⊂ B, be subsets of an inner product space. Show that

(a) B⊥ ⊂ A⊥

(b) A⊥⊥⊥ = A⊥.

21. Let M 6= ∅ be a subset of a Hilbert space H. Show that Span M is dense in
H if and only if M⊥ = {0}. By the span of a set A we mean all finite linear
combinations of the elements in the set A.

22. Let M 6= ∅ be any subset of a Hilbert space H. Show that M⊥⊥ is the smallest
closed subspace in H that contains M .

23. Let (xn)∞n=1 be a complete orthonormal sequence in a Hilbert space H. Show
that

〈x, y〉 = Σ∞
n=1〈x, xn〉〈y, xn〉

for all x, y ∈ H. Also show that the reverse implication is true.

15Hint: Use Banach-Steinhaus theorem above
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24. Let (xn)∞n=1 be an orthonormal sequence in a Hilbert space H. Show that (xn)∞n=1

is complete if and only if the closure of the span of (xn)∞n=1 equals H.

25. If (xn)∞n=1 is a complete orthonormal set for a vector subspace S of a Hilbert
space H, then any x ∈ S can be expressed in the form x = Σcnxn. Conversely, if
y = Σcnxn, does if follow that y ∈ S? What happens if S is a Hilbert subspace
of H?

26. Given a convergent infinite series, one cannot in general rearrange the terms; if
the sequence (vn) is a rearrangement of a series (un), and Σun = U , then Σvn

need not equal U , unless Σun converges absolutely. However, prove that if (en)
is a complete orthonormal set and (fn) is a sequence obtained by arranging (en)
in a different order, then (fn) is a complete orthonormal set, and therefore the
series x = Σ〈x, en〉en can be rearranged.

27. (A space with no complete ON sequence) The set of all periodic functions
� → �

is clearly not a vector space. But if we consider the set M of functions which are
sums and products of finitely many periodic functions, we obtain a vector space.
The elements of M are called almost-periodic functions. It can be proved
that for any f, g ∈ M ,

lim
T→∞

(
1

2T

∫ T

−T

f(t)g(t) dt)

exists and defines an inner product on M . Verify that any two members of the
family of functions eiat, where a is real, are orthogonal in the inner product space
M . Deduce that M has no countable basis.

28. Find an orthonormal basis of the subspace Span{1 + x, 1 − x} of L2([0, 1]).

29. Let P and Q denote orthogonal projections onto two subspaces in a Hilbert space.
Prove that ‖P − Q‖ ≤ 1.

30. Suppose S is a closed convex subset of a Hilbert space H and let PS denote the
orthogonal projection onto S, i.e. for any x ∈ H, PS(x) denotes the point in S,
which is nearest to x. Prove that

‖PS(x) − PS(y)‖ ≤ ‖x − y‖ for all x, y ∈ H.

31. In the vector space
� n use the norm ‖u‖ = Σ|ui|. Let x = (1,−1, 0, . . . , 0) and

let E be the subspace {(t, t, 0, . . . , 0) : t ∈ � }. Setting yt = (t, t, 0, . . . , 0) for the
elements of E, show that all yt with |t| ≤ 1 have the same distance from x, and are
closer to x than any yt with |t| > 1. This shows that the best approximation in a
subspace can be non-unique in normed spaces, though in Hilbert spaces they are
unique. Deduce that the norm Σ|ui| cannot be obtained from any inner product.

32. Let H = {f ∈ L2([0, 1]) : f ′ ∈ L2([0, 1])}, and for f, g ∈ H define

〈f, g〉 = f(0)g(0) +

∫ 1

0

f ′(s)g′(s) ds.

Take L2 here to be the space of real functions. Show that H is a Hilbert space.
For each t ∈ [0, 1] define a function Rt ∈ H by Rt(s) = 1 + min(s, t), where
min(s, t) denotes the smaller of s and t. Show that 〈f,Rt〉 = f(t) for all f ∈ H.

Now consider the following problem in approximation theory. The interval [0, 1]
is divided into subintervals given by numbers 0 = t1 < t2 < . . . < tn = 1. Given
a function f , we wish to approximate it by a piecewise linear function F which
is linear in each subinterval. Show that the set of all such functions F is the
subspace spanned by {Rti

: i = 1, 2, . . . , n}. Show that the best piecewise linear
approximation to f in the sense of the norm corresponding to the above inner
product in H is the piecewise linear function F which equals f at the points ti.
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33. Suppose A : H → H is a linear mapping that satisfies

〈Ax, y〉 = 〈x,Ay〉 all x, y ∈ H.

Prove that A is a continuous mapping.16

34. Let (xn)∞n=1 be a complete ON-sequence in a Hilbert space H and let (yn)∞n=1 be
another ON-sequence such that

Σ∞
n=1‖xn − yn‖2 < 1.

Show that the ON-sequence (yn)∞n=1 also is complete.

35. Let (un)∞n=1 be an orthonormal sequence in L2([0, 1]). Show that the sequence is
an orthonormal basis if

Σ∞
n=1|

∫ x

0

un(t) dt|2 = x, for all x ∈ [0, 1].

16Hint: Apply Banach–Steinhaus theorem
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1.6 Linear operators on Hilbert spaces

Key words: bilinear functional, quadratic form, coercive functional, adjoint operator,
self-adjoint operator, inverse operator, normal operator, isometric operator, unitary
operator, positive operator, projection operator, compact operator, finite-dimensional
operator, eigenvalues/eigenvectors, resolvent, spectrum, unbounded operators

1. Let A be a self-adjoint operator on a Hilbert space H and assume that R(A) = H.
Show that A : H → R(A) is an invertible mapping.

2. Assume that An → A in B(H,H), where H is a Hilbert space. Show that A is
self-adjoint if all An are self-adjoint.

3. Let A be a linear compact operator on a Hilbert space H. Prove that I + A is a
compact operator if and only if H is finite-dimensional.

4. Let B be a bounded linear operator on a Hilbert space. Prove that

R(B)⊥ = N (B∗)

and
R(B) = N (B∗)⊥.

5. Let A be a compact linear operator on a Hilbert space H. Prove that R(I − A)
is a closed subspace17 of H.

6. Let A be a compact linear operator on a Hilbert space. Prove that

R(I − A) = N (I − A∗)⊥.

7. Assume that xn
w→ x in a Hilbert space H. Moreover assume that A : H → H is

a bounded linear mapping. Does it follow that Axn
w→ Ax?

8. Show that for every compact operator A on a Hilbert space H there exists a
sequence (An)∞n=1 in B(H,H) such that dimR(An) < ∞ for n = 1, 2, . . . and
An → A in B(H,H).

9. Show that the integral operator on L2([0, 1]) with kernel K satisfying

∫ 1

0

∫ 1

0

|K(x, y)|2 dxdy < ∞

is compact18.

10. (a) Suppose f ∈ L1(
�

) and set

(Ax)(t) =

∫ ∞

−∞

x(s)f(t − s) ds x ∈ L2(
�

).

Prove that A defines a bounded linear operator on L2(
�

) with an operator
norm ≤ ‖f‖1.

(b) Suppose h > 0 and set

(Bx)(t) =
1

2h

∫ t+h

t−h

x(s) ds x ∈ L2(
�

).

Prove that B defines a bounded linear operator on L2(
�

) with norm 1.

17Hint: Let y ∈ H and suppose xn −Axn → y. Show that one can pick xn to belong to N (I −A)⊥

for every n. Show that {xn} must be bounded.
18Hint: Approximate K by K̃(x, y) = Σn

i,j=1
pi(x)qj(y). Alternatively approximate K by continuous

K̃ and use Arzela-Ascoli’s theorem.
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11. Set
(Ax)(t) = tx(t), x ∈ L2([0, 1]).

Prove that A defines a linear bounded self-adjoint operator on L2([0, 1]) without
eigenfunctions.

12. Find19 a mapping f : [0, 1] → L2([0, 1]) such that f(t1) 6= f(t2) for all t1 6= t2
and such that the vectors f(t1) − f(t2) and f(t3) − f(t4) are orthogonal for all
t1 < t2 < t3 < t4.

13. The operator A on L2([0, 1]) is defined by

(Af)(x) =

∫ x

0

f(y) dy, 0 ≤ x ≤ 1.

Find A∗.

14. Show that an operator of rank n can have at most n eigenvalues.

15. Set

(Ax)(t) =

∫ ∞

−∞

x(s)

1 + (t − s)2
ds, x ∈ L2(

�
).

Prove that A defines a linear bounded and self-adjoint operator on L2(
�

). Finally
prove that A is not a compact operator.

16. Set

(Tf)(x) =

∫ π

0

sin(x + y)f(y) dy, 0 ≤ x ≤ π.

Find the norm of T regarded as an operator on

(a) the Banach space C([0, π])

(b) the Hilbert space L2([0, π]).

17. Give an example of a non-self-adjoint operator on a Hilbert space H whose range
is H and which is not invertible.

18. Let Tn : E → H, n = 1, 2, . . ., be a sequence of bounded linear operators from a
normed space E into a Hilbert space H. We say that

(a) (Tn)∞n=1 is convergent in B(E,H) (or convergent in norm in B(E,H) or
uniformly operator convergent) if (Tn)∞n=1 is convergent in B(E,H);

(b) (Tn)∞n=1 is strongly operator convergent if (Tn(x))∞n=1 converges in H for all
x ∈ E;

(c) (Tn)∞n=1 is weakly operator convergent if (Tn(x))∞n=1 converges weakly in H
for all x ∈ E.

Show that a) ⇒ b) ⇒ c). Moreover, let An, Bn be operators on l2 defined by

An((x1, x2, . . .)) = ( 0, . . . , 0
︸ ︷︷ ︸

n positions

, xn+1, xn+2, . . .)

and
Bn((x1, x2, . . .)) = ( 0, . . . , 0

︸ ︷︷ ︸

n positions

, x1, x2, . . .).

In what modes do these sequences of operators converge?

19. A bounded linear operator A on a Hilbert space H is called unitary if A∗A =
AA∗ = I. Show that if A is unitary then ‖Ax‖ = ‖x‖ for all x ∈ H, i.e.
unitary operators do not change lengths. Deduce that all eigenvalues of unitary
operators have modulus 1, and eigenvectors belonging to different eigenvalues are
orthogonal. Show that all unitary operators are invertible.

If B is a self-adjoint operator, show that eiB is unitary.

19Hint: Let f(t) be the characteristic function for the set [0, t] for t ∈ [0, 1].
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20. A bounded linear operator A on a Hilbert space H is called a Hilbert-Schmidt
operator if the series Σij |〈Aei, fj〉|2 converges whenever (ei) and (fj) are or-
thonormal bases for the Hilbert space H. Show that this sum equals Σi‖Aei‖2,
and deduce that it is independent of the choice of bases (ei) and (fj).

Show that the set of Hilbert-Schmidt operators on a given Hilbert space H is a
vector space, and that ‖A‖HS = (Σi‖Aei‖2)1/2 is a norm on that space. Show
that ‖A‖HS ≥ ‖A‖ where ‖A‖ is the usual operator norm. Give an example in
which ‖A‖HS > ‖A‖.
If A and B are Hilbert-Schmidt operators, show that Σ〈Aei, Bei〉 converges ab-
solutely for every orthonormal basis (ei), and is independent of the choice of (ei).
Show that one can define an inner product [A,B] on the space of Hilbert-Schmidt
operators on H by [A,B] = Σ〈Aei, Bei〉.
If A and B are integral operators on L2([0, 1]) with continuous kernels K and
L respectively, show that they are Hilbert-Schmidt operators, and [A,B] =
∫ ∫

K(s, t)L(s, t) dsdt.

21. A bounded linear operator A on a Hilbert space is called normal if it commutes
with its adjoint, AA∗ = A∗A. Every self-adjoint operator is obviously normal.

(a) Show that if the function K(x, y) satisfies K(x, y) = K(y, x), then for any

real d, the operator u 7→ du + i
∫ 1

0
K(x, y)u(y) dy on the complex Hilbert

space L2([0, 1]) is normal.

(b) Show that if B,C are commuting self-adjoint operators, then B + iC is
normal.

(c) Prove the converse of (b), i.e. for any normal operator A, there are self-
adjoint commuting operators B,C such that A = B + iC.

22. Show that a compact normal operator has a complete set of orthogonal eigenvec-
tors.

23. Given an infinite matrix of numbers kij , i, j = 1, 2 . . ., we say that the double
series Σij |kij |2 converges if for each i the series Σj |kij |2 converges to a number Li

such that ΣiLi converges, and for each j the series Σi|kij |2 converges to a number
Mj such that ΣjMj converges. If Σij |kij |2 converges and kij = kji for all i, j, we
define an operator K on the space l2 by (Kx)i = Σ∞

j=1kijxj . Show that K is a

compact self-adjoint operator l2 → l2, and write out what the spectral theorem
says in this case.

24. Let (pi) and (qi) be two complete orthonormal sets for L2([0, 1]). Let H be the
space of square-integrable functions of two variables on the square 0 ≤ x, y ≤ 1,

with inner product
∫ 1

0

∫ 1

0
f(x, y)g(x, y) dxdy.

(a) Show that the set of functions pi(x)qj(y) is orthonormal in H.

(b) Show that if φ ∈ H and
∫ 1

0

∫ 1

0
φ(x, y)pi(x)qj(y) dxdy = 0 for all i, j, then

φ = 0.

(c) The set of functions pi(x)qj(y) is labeled by two integers and is therefore
countable, and can be arranged in a sequence. Prove that this sequence is
a complete orthonormal sequence.

25. Given a function K such that K(x, y) = K(y, x) and
∫ 1

0

∫ 1

0
|K(x, y)|2 dxdy exists,

let λi and φi be the eigenvalues and orthonormal eigenfunctions of the integral
operator on L2([0, 1]) whose kernel is K. Show that

K(x, y) = Σiλiφi(x)φi(y),

the convergence being with respect to the norm in the space H in the previous
problem. Show also that

∫ 1

0

∫ 1

0

|K(x, y)|2 dxdy = Σi|λi|2.
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26. K :
� 2 → � is a piecewise continuous function, and K(x, y) = K(y, x). The

integral operator A on L2([0, 1]) with kernel K has eigenvalues λi and orthonormal
eigenfunctions φi.

(a) Show that the series Σcnφn(x) converges absolutely and uniformly if the
constants satisfy Σ|cn/λn|2 < ∞.

(b) Show that if f is in the range of A, then the series Σ〈f, φn〉φn(x) converges
absolutely and uniformly to f on [0, 1]. Is this still true if we remove the
condition that f lies in the range of A?

27. Above it was shown that the eigenvalues λi of an integral operator with square-
integrable kernel are such that Σ|λi|2 converges. Is this true for compact self-
adjoint operators in general?

28. Let T be the linear mapping on L2([0, 1]) defined by

Tf(x) =

∫ 1

0

(x + y)f(y) dy, 0 ≤ x ≤ 1.

Show that T is bounded and calculate ‖T‖.
29. Let H be a Hilbert space. Prove or disprove the statement: Every bounded linear

mapping on H preserves orthogonality.

30. Let X be a separable Hilbert space and T : X → X a compact linear operator.
Show that T can be approximated by finite rank operators in B(H), i.e. there
exist a sequence of finite rank operators Tn on H such that Tn → T in operator
norm.

31. Let (en)∞n=1 be an ON-basis for a Hilbert space H and assume that T : H → H
is a bounded linear operator on H such that

Σ∞
n=1‖Ten‖2 < ∞.

Show that if (fn)∞n=1 is another ON-basis for H then

Σ∞
n=1‖Tfn‖2 = Σ∞

n=1‖Ten‖2.

Moreover show that
‖T‖2 ≤ Σ∞

n=1‖Ten‖2.

32. Set � + = {x ∈ � : x ≥ 0}. For f ∈ L2( � +) define

Mf(x) =
1

x

∫ x

0

f(t) dt, x > 0.

Show that
M : L2( � +) → L2( � +)

is a bounded linear mapping on L2( � +), calculate the operator norm of I − M
and, finally, determine the adjoint operator of M . Here I denotes the identity
operator on L2( � +).

33. Let X be a Banach space and T : X → X a compact20 linear operator. Show
that there exists a constant C such that for every y ∈ R(I + T ) there exists a
x ∈ X with y = (I + T )x such that

‖x‖ ≤ C‖y‖.

34. Let A be the linear mapping on L2([0, 1]) defined by

Af(x) =

∫ 1

0

(x − y)2f(y) dy, 0 ≤ x ≤ 1.

Calculate
20Exactly the same definition as for a linear operator on a Hilbert space
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(a) A∗

(b) ‖A‖.

35. Let T be a positive, self-adjoint, compact operator on a Hilbert space H. Show
that

〈Tx, x〉n ≤ 〈Tnx, x〉 · 〈x, x〉2(n−1),

for all positive integers n and all x ∈ H.

36. Let A be the linear mapping on L2([0, 1]) defined by

Af(x) =

∫ 1

0

(x − y)f(y) dy, 0 ≤ x ≤ 1.

Calculate

(a) A∗A

(b) ‖A‖.

37. Let T be a self-adjoint operator on a Hilbert space H. Assume that T n is compact
for some integer n ≥ 2. Prove that T is compact.

38. Let H be an infinite-dimensional Hilbert space and let T : H → C be a bounded
linear functional 6= 0. Calculate the dimension for the subspace N (T )⊥ of H.
Give an example of a Hilbert space H and a functional T as above.

39. Let T be a self-adjoint, positive, compact operator on a Hilbert space H with
‖T‖ ≤ 1. Give an estimate21 for

‖3T 4 − 20T 3 + T 2‖.

40. Let S be a dense subset in a Banach space X. Moreover let {Tn}∞n=1 be a sequence
of linear operators on X. Assume that

(a) limn→∞ Tn x exists for every x ∈ S and

(b) there exists a C > 0 such that

‖Tn x‖ ≤ C‖x‖

for all n and all x ∈ X.

Show that limn→∞ Tn x exists for every x ∈ X.

41. For x = (. . . , x−2, x−1, x0, x1, x2, . . .) ∈ l2 define

(Tx)n =

{
xn+1 + 2xn−1 + 10xn, n = 2k, k ∈ Z
2xn+1 + xn−1 + 10xn, n = 2k + 1, k ∈ Z

.

Which of the statements below hold true?

(a) T is a bounded linear operator on l2

(b) T is self-adjoint

(c) T is an invertible operator22.

21Better than the trivial estimate

‖3T 4 − 20T 3 + T 2‖ ≤ 3‖T‖4 + 20‖T‖3 + ‖T‖2 ≤ 24.

22i.e. T−1 ∈ B(l2).
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42. Let T be a bounded linear operator on a Hilbert space H where dimR(T ) = 1.
Show that for every y ∈ R(T ), y 6= 0, there exists a uniquely defined x ∈ H such
that

Tz = 〈z, x〉y, z ∈ H.

Moreover show that
‖T‖ = ‖x‖ · ‖y‖.

Apply this fact for calculating the operator norm for the mapping

Tf(t) =

∫ 1

0

et−sf(s) ds, f ∈ L2[0, 1].

43. Set

Au(x) =

∫ π

0

ex+y cos(x + y)u(y) dy, x ∈ [0, π].

Calculate the operator norm for A and see if A is a compact operator on the
Banach space

(a) C[0, π],

(b) L2[0, π].

44. Let T be a normal linear operator on a Hilbert space H, i.e. T is a bounded linear
operator that commutes with its adjoint operator T ∗, more precisely

TT ∗ = T ∗T.

Show that

(a) ‖Tx‖ = ‖T ∗x‖ for all x ∈ H;

(b) λ is an eigenvalue with the eigenvector x for T iff λ is an eigenvalue with
the eigenvector x for T ∗.

45. For u ∈ C[0, 1] set

(Au)(x) =

∫ 1−x

0

|x − y|u(y) dy, x ∈ [0, 1].

Show that A is a bounded linear operator on the Banach space C[0, 1] and cal-
culate the operator norm ‖A‖.

46. Let H be a complex Hilbert space and A a bounded linear operator on H with
the property

〈Ax, x〉 ∈ R

for all x ∈ H. Prove that A is self-adjoint.

47. Calculate the operator norm for A : C[0, π] → C[0, π] defined by

(Af)(x) =

∫ π

0

(1 + ei(x−y))f(y) dy.

Also calculate the operator norm for B : L2[0, π] → L2[0, π] defined by

(Bf)(x) =

∫ π

0

(1 + ei(x−y))f(y) dy.

The functions are complex-valued.

48. Let T be defined for x = (xn)∞n=1 by

(Tx)n = nxn, n = 1, 2, . . .

Show that D(T ) = {x ∈ l2 : Tx ∈ l2} is a dense subset in l2 and that T is a
bounded operator23 in l2, i.e. xn ∈ l2 for n = 1, 2, . . ., xn → y i l2, Txn → z i l2

implies that y ∈ D(T ) and Ty = z.

23Use e.g. the fact that T is a symmetric operator.
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49. Consider the integral operator

Af(x) =

∫ 2π

0

cos(x − y)f(y) dy, 0 ≤ x ≤ 2π.

Show that A defines a bounded linear operator on the Banach spaces (real-valued
functions)

(a) C[0, 2π]

(b) L2[0, 2π].

Also calculate the operator norm ‖A‖ for one of these spaces.

50. Consider the mapping

(x1, x2, x3, . . .) 7→ (x1,
1

2
(x1 + x2),

1

3
(x1 + x2 + x3), . . . ,

1

n
(x1 + x2 + . . . xn), . . .).

Show that this is a bounded linear mapping on l 2 that is not surjective.

51. Let T be a bounded linear operator on a Hilbert space H with ‖T‖ = 1. Assume
that there exists a x0 ∈ H such that Tx0 = x0. Show that we have T ∗x0 = x0.
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1.7 Ordinary differential equations

Key words:Green’s function, symmetric operators

1. Calculate the Green’s functions for the boundary value problems

a)

{
u′′(x) + u(x) = f(x)

u′(0) = u′
(π

2

)

= 0, 0 ≤ x ≤ π

2

b)

{
u′′(x) = f(x)
u(0) − 2u(1) = u′(0) − 2u′(1) = 0, 0 ≤ x ≤ 1

c)

{
u′′(x) + u(x) = f(x)
u(0) = u′(0) = 0, 0 ≤ x ≤ T

d)

{
1

6
u(4)(x) = f(x)

u(0) = u′(0) = u(1) = u′(1) = 0

e)

{
u(4)(x) = f(x)
u(0) = u′′(0) = u(1) = u′′(1) = 0

2. Show that (using the notations from ”A note on ordinary differential equations”)
the boundary value problem

{
Lu = f
Ru = c

is uniquely solvable for every f ∈ Cn(I) and c ∈ � n iff

det{Rjuk}1≤j,k≤n 6= 0.

3. Show that the Green’s function g(x, t) in Example 1 on page 9 in ”A note on
ordinary differential equations” satisfies g(x, t) = g(t, x) and hence the operator
G̃ : L2([0, 1]) → L2([0, 1]) defined by

(G̃f)(x) =

∫ 1

0

g(x, t)f(t)dt,

is self-adjoint.

4. Show that the problem
{

u′′(x) + u(x) = eix + 1
2Re u(x), 0 ≤ x ≤ π/2

u′(0) = u′(π/2) = 0, u ∈ C2([0, π/2])

has a unique solution.

5. Set (Lu)(x) = u(4)(x), 0 ≤ x ≤ 1. Show that L0 is symmetric if

(a) R1u = u(0), R2u = u′(0), R3u = u(1), R4u = u′(1)

(b) R1u = u(0), R2u = u′′(0), R3u = u(1), R4u = u′′(1).

6. Assume that (Lu)(x) = −u′′(x) + u(x), 0 ≤ x ≤ 1 and that R1u = u(0) − u(1)
and R2u = u′(0) − u′(1). Show that

(a) L0 is bijective

(b) L0 has both 1- and 2-dimensional eigenspaces.

7. Assume that (Lu)(x) = (p(x)u′(x))′ − q(x)u(x), a ≤ x ≤ b, where p ∈ C1(I) and
q ∈ C(I) are real-valued and p(x) > 0, a ≤ x ≤ b. Moreover assume that

R1u = α11u(a) + α21u
′(a)

and
R2u = β12u(b) + β22u

′(b)

where (α11, α21) ∈
� 2\{0} and (β12, β22) ∈

� 2\{0}. Show that L0 is symmetric.
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8. Assume that the integral operator

(Qf)(x) =

∫ b

a

q(x, y)f(y)dy, a ≤ x ≤ b,

defined on L2(I) with an L2- kernel q is self-adjoint and has the eigenvalues
(λi)

∞
1 , counted with multiplicity, and corresponding eigenfunctions (ei)

∞
1 .

(a) Use Bessel’s inequality to show that

∞∑

1

λ2
i |ei(x)|2 ≤

∫ b

a

|q(x, y)|2dy.

(b) Show that
∞∑

1

λ2
i ≤

∫ b

a

∫ b

a

|q(x, y)|2dxdy.

(c) Show that

q(x, y) =

∞∑

1

λiei(x)ei(y) i L2(I × I).

9. Prove that

min(x, y) =

∞∑

n=0

2

(n + 1
2 )2π2

sin

(

n +
1

2

)

πx sin

(

n +
1

2

)

πy

in L2([0, 1] × [0, 1]).

10. Show that the series in Theorem 1.7 in ”A note on ordinary differential equations”
converges uniformly to u.

11. Prove that there is no function u defined in the interval [0, 1] such that

{
xu′(x) + u(x) = 0, 0 ≤ x ≤ 1
u(0) = 1.

12. Prove the existence of solutions u of the following boundary value problem

{
−u′′(x) = 3(1 + u2(x)), 0 ≤ x ≤ 1
u(0) = u(1) = 0, u ∈ C2([0, 1]).

13. Prove the existence and uniqueness of solutions of the following boundary value
problem 





−u′′(x) = 7
u(x)

1 + u2(x)
+ sin(πx), 0 ≤ x ≤ 1

u(0) = u(1) = 0, u ∈ C2([0, 1]).

14. Prove the existence and uniqueness of solutions of the following boundary value
problem

{
4u′′(x) = |x + u(x)|, 0 ≤ x ≤ 1
u(0) − 2u(1) = u′(0) − 2u′(1) = 0, u ∈ C2([0, 1]).

15. Let λ ∈ �
be different from 0.

(a) Solve the equation

{

|u′(x)|2 +
1

λ
u′′(x) = 1, 0 ≤ x ≤ 1

u(−1) = u(1) = 0, u ∈ C2([0, 1]).

(b) Let u(x) = u(x, λ) be the solution in part (a). Calculate limλ→±∞ u(x, λ).

32



16. Show that the following boundary value problem






u′′(x) + u(x) =
u(x)

2 + u2(x)
, 0 ≤ x ≤ π

2
u(0) = u(π

2 ) = 0, u ∈ C2([0, π
2 ])

17. Show that the following boundary value problem (almost the same as problem 1)






u′′(x) + u(x) = λ
u(x)

2 + u2(x)
, 0 ≤ x ≤ π

2
u(0) = u(π

2 ) = 0, u ∈ C2([0, π
2 ])

has a solution for all λ ∈ � .

18. Prove the existence and uniqueness of a solution to the following boundary value
problem

{
u′′(x) + u′(x) = arctan u(x2), 0 ≤ x ≤ 1
u(0) = u(1) = 0, u ∈ C2([0, 1])

19. Consider the differential equation
{

−u′′ = λeu, 0 < x < 1,
u(0) = u(1) = 0.

(a) Formulate the boundary value problem as a fixed point problem u = Tu,
where T is an integral operator.

(b) Set B = {u ∈ C([0, 1]) : ‖u‖∞ ≤ 1}. Show that T maps B into itself
provided 0 < λ < λ0 for λ0 sufficiently small. Give a numerical value on λ0.

(c) Show that the differential equation is uniquely solvable in B with λ chosen
as in (b).

20. Show that there exists a unique C2-function u(x) defined on [0, 1] with u(0) =
u(1) = 0 such that

u′′(x) − cos2 u(x) = 1, x ∈ [0, 1].

21. Show that there exists a unique C2-function u(x) defined on [0, 1] such that

u(0) − 2u(1) = u′(0) − 2u′(1) = 0

and
4u′′(x) − |u(x) + x| = 0, x ∈ [0, 1].

22. Show that there exists a unique C2-function u(x) defined on [0, 1] such that
u(0) = u′(0) = 0 and

u′′(x) − u(x) +
1

2
(1 + u(x2)) = 0, x ∈ [0, 1].

23. Show that there exists a unique C2-function u(x) defined on [0, π
2 ] such that

u′(0) = u′(π
2 ) = 0 and

u′′(x) + u(x) =
1

2
sin u(

1

2
x2), x ∈ [0,

π

2
].

24. Let H be a Hilbert space. Apply the spectral theorem to find a H-valued solution
u(t) to the initial value problem







du

dt
(t) + Au(t) = 0, t > 0,

u(0) = u0 ∈ H,

where A is a compact self-adjoint positive operator on H. Show that

‖u(t)‖ ≤ ‖u0‖, t ≥ 0.
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25. Let f ∈ C([0, 1]) and λ ∈ R. Show that the equation

{
u′′(x) + u′(x) + λ|u(x)| = f(x), x ∈ [0, 1]
u(0) = u(1) = 0, u ∈ C2([0, 1])

has a unique solution provided |λ| is small enough.
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1.8 Calculus of variation

Key words: Gateaux derivative, Fréchet derivative, convex functions, stationary point,
Euler-Lagrange equation, variational problems with constraints

1. Show that if h ∈ C([a, b]) and
∫ b

a
h(x)v′(x) dx = 0 for all v ∈ C1([a, b])

⋂ {v(a) =
v(b) = 0} then h = constant on [a, b].

2. Let m ∈ � . Show that if g ∈ C([a, b]) and
∫ b

a
g(x)v(x) dx = 0 for all v ∈

Cm([a, b])
⋂{v(k)(a) = v(k)(b) = 0 k = 0, 1, . . . ,m} then g = 0 on [a, b].

3. Set E = C1([a, b]) and let δI(y; v) denote the (Gateaux–)variation

dI(y; v) = lim
ε→0

1

ε
(I(y + εv) − I(y)),

where y, v ∈ E. Calculate δI(y; v) for

(a) I(y) =
∫ b

a
((y(x))3 + x(y′(x))2) dx

(b) I(y) =
∫ b

a
(exy(x) − 3(y′(x))4) dx + 2(y′(a))2

(c) I(y) =
∫ b

a
y(x) dx/

∫ b

a
(1 + (y′(x))2) dx

4. Give the Euler-Lagrange equation for F (x, y, z) = 2xy−y2 +3zy2, (x, y, z) ∈ � 3.
Find the stationary solutions for F above on D = C1([0, 1])

⋂{y(0) = 0, y(1) =
1}.

5. Assume f :
� n → �

is differentiable. Show that

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) for all x, y ∈ � n, t ∈ (0, 1),

i.e. f is a convex function, if and only if

f(x) ≥ f(y) + ∇f(y) · (x − y)) for all x, y ∈ � n. (3)

Moreover interpret (3) geometrically.

6. Let I : D → �
be a functional defined on a subset D of a vector space. We say

that I is convex on D if

I(y + v) − I(y) ≥ δI(y; v) for all y, v ∈ D.

Now set D = C1([a, b])
⋂{y(a) = α, y(b) = β} for α, β ∈ �

. Moreover, assume
that F ∈ C2([a, b] × � 2) and that F (x, ·, ·) :

� 2 → �
is a convex function for

all x ∈ [a, b]. Show that I(y) =
∫ b

a
F (x, y(x), y′(x)) dx is convex on D and that

y0 ∈ D is a minimizer on D provided

d

dx
F ′

y′F (x, y0(x), y′
0(x)) = F ′

y(x, y0(x), y′
0(x)) for x ∈ (a, b).

7. Let D be a subset of a vector space and let I,G1, . . . , GN be functionals defined
on D. Show that if there are some constants λ1, . . . , λN and a vector y0 ∈ D such
that y0 is a minimizer of Ĩ ≡ I +λ1G1 + . . .+λNGN on D then y0 is a minimizer
of I on D

⋂{y ∈ D : Gj(y) = Gj(y0), j = 1, . . . , N}.

8. Minimize I(y) =
∫ 1

0
(y′(x))2 dx on D = C1([0, 1])

⋂{y(0) = y(1) = 0} when

restricted to the set {y ∈ C1([0, 1]) : G(y) ≡
∫ 1

0
(y(x))2 dx = 1}.
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9. Consider the minimizing problem

inf
y∈D

IF (y),

where D = C2([a, b])
⋂{y(a) = α1, y

′(a) = α2, y(b) = β1, y
′(b) = β2} for

α1, α2, β1, β2 ∈ �
, F ∈ C3([a, b] × � 3) and

IF (y) =

∫ b

a

F (x, y(x), y′(x), y′′(x)) dx.

Give a necessary condition (= Euler-Lagrange equation) on y0 to be a minimizer
on D.

10. Consider the functional I : C1([a, b])
⋂{y(a) = α, y(b) = β} → �

, where I(y) =
∫ b

a
F (y(x), y′(x)) dx and α, β ∈ �

. Assume that y0 is a minimizer on D. Show
that

F (y0(x), y′
0(x)) − y′

0(x)F ′
y′(y0(x), y′

0(x)) = constant

on (a, b).
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