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1 A Note on Fixed Point Theory

1.1 Introduction

This note contains topics from nonlinear functional analysis. It means that the
mappings appearing are not assumed to be linear unless explicitly stated to be so.

Our main problem is to solve equations of the form

T (u) = v,

where T : X → Y is a mapping between Banach spaces X and Y . Here v ∈ Y is
given and we look for solutions in X or some subset of X. For linear mappings T we
can often find a formula for the inverse operator. The solution has to be uniquely
defined in this case. An example of this is boundary value problems

{
u(n) + an−1u

(n−1) + . . . + a1u
′ + a0u = v, in I

homogeneous boundary values on ∂I

The solutions are obtained as convolutions of the Green’s function for the problem
with the right hand side v of the differential equation.

However if T is a nonlinear mapping then in general we can not find a formula
representing the solution/solutions. This is also the case when X = Y . We can no
longer prove the existence of a solution just by explicitly writing down the inverse
operator, but we have rely on mapping properties of T to prove the existence of a
solution. It might be the case that there are several solutions.

In connection with integral equations for instance we have X = Y and the mapping
T takes the form

T (u) = u + G(u),

i.e. T is a perturbation of the identity mapping. Then the problem can be formulated
as

u = H(u),

where H(u) = v − G(u). Here we suppress the variable v and consider H as a
function of u with v as a parameter. The problem to find a solution of (1.1) is then
equivalent to find a fixed point of H, i.e. an element u0 ∈ X such that

u0 = H(u0).
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We recall that if G is linear and small in the sense that the operator norm of G is
less than 1 then the mapping T−1 is a welldefined bounded linear mapping and can
be obtained as a Neumann series (see [4]).

The fixed point results that will be discussed are of two types. The first type deals
with contractions and are referred to as Banach’s fixed point theorems. The second
type deals with compact mappings and is more involved. Names associated with
such results are Brouwer and Schauder.

Let us now consider a simple example. Assume that

f : [0, 1] → [0, 1]

is a continuous function. Then there exists a x0 ∈ [0, 1] such that f(x0) = x0. This is
a consequence of the theorem saying that a real-valued continuous function attains
every intermediary value between any two given values and is based on the fact that

1. [0, 1] is a connected subset in a Banach space, here
�

, and that

2. f is a continuous function.

To prove the existence of a fixed point for f just define the function g(x) = x−f(x)
on the interval [0, 1] and observe that g is a continuous function satisfying g(0) ≤
0 ≤ g(1). We can then conclude that there is a x0 ∈ [0, 1] such that g(x0) = 0.
This example can be considered as the 1-dimensional version of Brouwer fixed point
theorem. One feature here is that the method is not constructive, i.e. the position
of the fixed point is not given by the method. Nor does the method yield that the
fixed point is unique, which indeed is sound since there can be any number of fixed
points for f . To get some information on the position of one fixed point we can
use the strategy of repeatedly cutting intervals into pieces as follows: Assume that
g(0) < 0 < g(1), since otherwise we already have one fixed point, and consider the
subintervals [0, 1

2
] and [1

2
, 1]. If g(1

2
) = 0 we have one fixed point namely x0 = 1

2
.

If g(1
2
) > 0 or g(1

2
) < 0 we can apply the procedure to the the restriction of the

function g to the subintervals [0, 1
2
] and [1

2
, 1] respectively. In this way we either

find a fixed point as an end point of an interval or we find an infinite set of nested
shrinking intervals that all contains a fixed point. For the later case we can for any
ε > 0 find an interval of length less than ε that contains a fixed point. We also note
that this argument proves the intermediary value theorem provided we have that

�

is a complete normed space, i.e. a Banach space. Also compare the argument above
with the proof of Baire’s theorem.

1.2 Banach’s fixed point theorem

First we look at the problem to find a fixed point for a real-valued continuous
function f :

�
→

�
in the spirit of Banach’s fixed point theorem. We then need f

to be a contraction meaning that there is a positive real number c less than 1 such
that for any pair x, y of points the distance between the images under f of these
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points are closer by a fraction c than the distance between the points x and y. In
formulas this means

|f(x) − f(y)| ≤ c|x − y|

for arbitrary x, y ∈
�

. The conclusion from Banach fixed point theorem is that
there is a unique fixed point for f . This can be found by just fixing any element
z ∈

�
and then forming the sequence1 (T n(z))∞n=1. This is a converging sequence

with the fixed point as the limit point. On the other hand there is no restriction on
the domain of f being a convex compact set.

We first state and prove some general observations.

Theorem 1.1. Let T be a continuous mapping on a Banach space X. Then the
following statements hold true:

1. If there exist x, y ∈ X such that

lim
n→∞

T n(x) = y

then y is a fixed point for T , i.e. T (y) = y.

2. If T (X) is a compact set in X and for each ε > 0 there exists a xε ∈ X such
that

‖T (xε) − xε‖ < ε

then T has a fixed point.

Proof. Set yn = T n(x), n = 1, 2, . . .. If T is a continuous mapping then

T (y) = T ( lim
n→∞

yn) = lim
n→∞

T (yn) = lim
n→∞

yn+1 = y,

which proves the first statement.

Assume that the assumptions of 2) are satisfied. Then for n = 1, 2, . . . there are
xn ∈ X such that

‖T (xn) − xn‖ <
1

n
. (1)

T (X) is a compact set implies that there exits a convergent subsequence (T (xnk
))∞k=1

of (T (xn))∞n=1. Call the limit point x. Then x is a fixed point for T since also the
sequence (xnk

)∞k=1 converges to x according to (1) and T is continuous.

We now formulate one of the main theorems.

Theorem 1.2 (Banach’s fixed point theorem). Let T be a contraction on a
Banach space X. Then T has a unique fixed point.

1Tn denotes the operator obtained by composing T with itself n times, i.e. T n = T ◦ T ◦ . . . ◦ T
︸ ︷︷ ︸

n elements

.
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Proof. Fix an arbitrary element z ∈ X and consider the sequence

(T n(z))∞n=1.

Set zn = T n(z) for n = 1, 2, . . .. We note that

‖zn − zm‖ ≤ ‖zn − zn−1‖ + . . . + ‖zm+1 − zm‖ =

= ‖T (zn−1) − T (zn−2)‖ + . . . + ‖T (zm) − T (zm−1)‖ ≤

≤ c‖zn−1 − zn−2‖ + . . . + c‖zm − zm−1‖ ≤ . . . ≤

≤ (cn−1 + cn−2 + . . . cm−1)‖z1 − z‖ ≤
cm−1

1 − c
‖z1 − z‖,

where we (without loss of generality) have assumed n > m ≥ 1. This yields
‖zn − zm‖ → 0 as n,m → ∞ and hence (zn)∞n=1 is a Cauchy sequence. Since X is a
Banach space the sequence converges, i.e. there is a x0 ∈ X such that zn → x0 as
n → ∞. Here x0 is a fixed point for T since

‖T (x0) − x0‖ ≤ ‖T (x0) − T (zn)‖ + ‖zn+1 − x0‖ ≤ c‖x0 − zn‖ + ‖zn+1 − x0‖

where the LHS is independent of n and the RHS tends to 0 as n → ∞. The
uniqueness follows from the contraction property for T . If x0 6= y0 both are fixed
points of T then we get

‖x0 − y0‖ = ‖T (x0) − T (y0)‖ ≤ c‖x0 − y0‖ < ‖x0 − y0‖

which yields a contradiction.

From the proof it follows that

1. the sequence (T n(z))∞n=1 converges to the unique fixed point independently
of the choice of z.

2. for an arbitrary element x ∈ X we have

‖x − x0‖ ≤
1

1 − c
‖x − T (x)‖,

where x0 denotes the fixed point of T , since

‖x − x0‖ ≤ ‖x − T (x)‖ + ‖T (x) − T (x0)‖ ≤ ‖x − T (x)‖ + c‖x − x0‖.

Banach’s fixed point theorem can be generalized in the following way.

Theorem 1.3. Let T be a mapping on a Banach space X such that T N is a con-
traction on X for some positive integer N . Then T has a unique fixed point.

4



It is not necessary to assume that T is continuous.

Proof. Banach’s fixed point theorem implies that there exists a unique fixed point
for T N . Call this element x0. Now just note that

‖T (x0) − x0‖ = ‖T N(T (x0)) − T N(x0)‖ ≤ c‖T (x0) − x0‖

implies that T (x0) = x0 since 0 < c < 1. The uniqueness is clear since a fixed point
for T is also a fixed point for T N .

1.3 Brouwer and Schauder fixed point theorems

We start by formulating Brouwer fixed point theorem.

Theorem 1.4 (Brouwer’s fixed point theorem). Assume that K is a compact
convex subset of

� n and that T : K → K is a continuous mapping. Then T has a
fixed point in K.

Note that it does not follow from Brouwer fixed point theorem that the fixed point
is unique. Consider for instance the identity operator on a compact convex set K in

� n for which every x ∈ K is a fixed point.

Example 1: Take a street map for Goteborg and place it on the floor of the lecture
room at Chalmers. Then there will be a point on the map that coincides with
the corresponding point in Goteborg. This follows from both Banach’s fixed point
theorem and Brouwer’s fixed point theorem, where the former theorem also gives
that the point is unique. Prove this to yourself!

Example 2: Let Tα denote the rotation α degrees around the center for a closed
disc K of radius 1. Then Brouwer’s fixed point theorem gives the existence of a
fixed point for Tα (of course it is overkill to use a fixed point theorem to see that)
while Banach’s fixed point theorem cannot be applied directly2 since Tα is not a
contraction. It is obvious that the center is a fixed point but Brouwer’s fixed point
theorem also tells us that it is not possible to compose the rotation with a continuous
deformation of the disc into itself in such a way that the composed mapping has no
fixed point.

We note that

• (generalization of Brouwer’s fixed point theorem): If there exists a homeomor-
phism, i.e. a continuous bijection with continuous inverse, between a compact

2Assume that the disc has its center at the origin in � n. Apply Banach’s fixed point theorem
to the operators Tn = (1 − 1

n
)T, n = 1, 2, . . .. We obtain a sequence of fixed points xn to Tn such

that

‖T (xn) − xn‖ ≤
1

n
, n = 1, 2, 3, . . . .

The result follows from Theorem 1.1 above.
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convex set K in
� n and a set K̃, call the homeomorphism ϕ, and T̃ : K̃ → K̃

is a continuous mapping then T̃ has a fixed point. To see this consider the
mapping T = ϕ−1 ◦ T̃ ◦ ϕ.
Exercise: Prove that T̃ has a fixed point.

• it is enough to prove Brouwer fixed point theorem in the case3 K = B(0, 1).

There are many proofs for Brouwer’s fixed point theorem, both analytical and topo-
logical. We just sketch one proof. Assume that K = B(0, 1) and that T has no fixed
point. Define the mapping A : B(0, 1) → B(0, 1) as follows: For every inner point
x in B(0, 1) let x̃ denote the point on the boundary ∂B(0, 1) that is the intersec-
tion of the ray from T (x) through x and the boundary ∂B(0, 1). The ray is always
well-defined since T has no fixed point. Now set

A(x) =

{
x̃ if x ∈ B(0, 1)
x if x ∈ ∂B(0, 1)

Then A is a continuous mapping from B̄(0, 1) into ∂B(0, 1) (verify this!) such
that A|∂B(0,1) = I|∂B(0,1). The problem to show that T has no fixed point is now

reformulated as to show that there is no continuous mapping A : B(0, 1) → ∂B(0, 1)
such that A|∂B(0,1) = I|∂B(0,1). The statement that there is no such mapping is deep
but never the less intuitively obvious4. Consider, for n = 2, the case with an elastic
membrane fixed on a circular frame. The existence of a mapping A implies that
it should be possible to deform the membrane continuously in such a way that it
should coincide with the frame without being fractured. For fixed x ∈ B(0, 1) the
mapping

t 7→ (1 − t)x + tA(x), t ∈ [0, 1]

describes how this point on the membrane is moved from x at t = 0 to A(x) ∈
∂B(0, 1) at t = 1, under the deformation. Do not forget that the membrane should
be fixed at the frame!!!

Another beautiful proof based on Sperner’s lemma will be indicated in the Exercises
[5].

We present Perron’s theorem as an application of Brouwer’s fixed point theorem.
Schauder’s fixed point theorem will be applied in the context of nonlinear differen-
tial/integral equations to prove the existence of solutions.

Theorem 1.5 (Perron’s theorem). Let A be a real n × n–matrix with positive
entries. Then there exists a positive eigenvalue for the linear mapping given by the
matrix A, with an eigenvector with positive entries5.

3B(a, r) = {x ∈ R
n : ‖x − a‖ < r}

4Another such result that appears to be obviously true but hard to prove is Jordan curve
theorem. This theorem says that every simple (no self-intersections) closed (the end points coincide)
curve in the plane, i.e. every continuous injective mapping γ : S1 → � 2, decomposes the plane in
two connected components. Here S1 denotes the set {(x, y) ∈ � 2 : ‖(x, y)‖ = 1}.

5Hint: Let K denote the set {(x1, . . . , xn) : xi ≥ 0 all i, Σn

i=1
xi = 1} and set T (x) =

Ax/‖Ax‖l1 for x ∈ K.
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In a finite-dimensional normed space compactness is equivalent to closedness and
boundedness. This is not the case in an infinite-dimensional normed space. The
following example due to Kakutani should be compared to the next fixed point
theorem due to Schauder.

Example: Let B denote the closed unit ball in l 2( � ), where l 2( � ) consists of all

elements x = (. . . , x−1, x0, x1 . . .) such that ‖x‖ = (Σ∞
n=−∞|xn|

2)
1

2 < ∞. It is clear
that B is convex and bounded. Let z be the element in l 2( � ) that satisfies z0 = 1
and zn = 0 for n 6= 0 and let S denote the shift operator defined by (S(x))n = xn−1

for n ∈ � . Now set
T : l 2( � ) → l 2( � ),

where
T (x) = S(x) + (1 − ‖x‖)z.

We have
‖T (x)‖ ≤ ‖S(x)‖ + (1 − ‖x‖) = 1

for x ∈ B, i.e. T (x) ∈ B. But T has no fixed point in B since

(T (x))n = xn−1, n 6= 0

and
(T (x))0 = x−1 + (1 − ‖x‖),

which implies that x0 = x1 = . . . = xn = . . . and x−1 = x−2 = . . . = x−n = . . .. This
yields a contradiction since x ∈ l 2( � ). Prove this to yourself!

From this example we see that a generalization of Brouwer’s fixed point theorem to
infinite-dimensional spaces should have the assumption that T (K) is a compact set.
We next formulate two versions of Schauder’s fixed point theorem.

Theorem 1.6 (Schauder’s fixed point theorem). Assume that K is a convex
compact set in a Banach space X and that T : K → K is a continuous mapping.
Then T has a fixed point.

For applications the following generalization proves to be useful.

Theorem 1.7 (generalization of Schauder’s fixed point theorem). Let F be
a closed convex set in a Banach space X and assume that T : F → F is a continuous
mapping such that T (F ) is a relatively compact subset of F . Then T has a fixed
point.

We recall that a set K1 ⊂ X is compact6 if every sequence in K1 has a convergent
subsequence in K1. Moreover we say that K2 ⊂ X is relatively compact if every

6This definition of compactness and relative compactness is sometimes referred to as sequentially
compactness and sequentially relatively compactness in the literature. The words compactness and
relatively compactness are then reserved to mean the following: A set K in a normed space is called
compact if for each open cover of K there is a finite subcover. An open cover of K is a collection
of open sets Oλ, λ ∈ Λ, whose union contains K as a subset. A finite subcover is a finite subset
of {Oλ}λ∈Λ whose union also contains the set K. It can be shown that for metric spaces X the
notions sequentially compact and compact are equivalent.
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sequence in K2 has a subsequence that converges in X. The limit element of the
converging sequence belongs to K2. The set K2 being relatively compact implies
that K2 is a compact set. Also an arbitrary subset of a compact set is relatively
compact.

To prove Schauder’s fixed point theorem we will make use of some new concepts
and facts for compact sets that will be given here. We say that the convex hull of a
set F is the set, denoted by co F , that is defined by

⋂

F⊂H,H convex

H.

By a convex combination of the elements x1, x2, . . . , xn we mean a linear combination
Σn

i=1λixn, where all λi ≥ 0 and Σn
i=1λi = 1. An ε–net is a subset Fε of F with the

property that for each x ∈ F there exists a y ∈ Fε such that ‖x − y‖ < ε.

Proposition 1.1. The following statements are true:

1. A set F is relatively compact iff for each ε > 0 there exists a finite ε–net.

2. A set K is compact iff it is closed and for every ε > 0 there exists a finite
ε–net.

3. The set co F is the same as the set of all convex combination of finitely many
elements in F .

4. K compact set implies that co K is compact.

The proof is left as an exercise.

Proof. (of the Schauder theorems) The second Schauder theorem is a consequence
of the first one. To see this assume that the hypothesis of the second theorem are
satisfied. It then follows that the closed hull R of R = T (F ) is compact and so also
co R. Set K = co R. We see that K ⊂ F since F is closed and convex. Moreover
T : K → K is continuous. Hence the second theorem follows from the first theorem.

It remains to prove the first theorem. This will be done by approximating the
compact set K by compact sets Kn, n = 1, 2, . . . in finite-dimensional spaces and
approximating the mapping T by continuous mappings Tn : Kn → Kn, where the
approximation becomes better and better for larger n. Brouwer’s fixed point theorem
gives a sequence of points (xn) that are fixed points for the sequence (Tn), from which
a converging subsequence of points (xnk

) can be extracted. The limit element of this
sequence will be a fixed point for T .

For every positive integer n we define mappings Pn, called Schauder projections,
as follows: The compactness of K implies that there are finitely many elements
x1, . . . , xk ∈ K such that

K ⊂
k⋃

i=1

B(xi,
1

n
).
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Set

fi(x) = max(0,
1

n
− ‖x − xi‖), i = 1, . . . , k.

For every x ∈ K there exists an i such that fi(x) > 0. This implies that Σk
i=1fi(x) >

0 for all x ∈ K. Now set Kn = co{x1, . . . , xk} and

Pn(x) =
Σk

i=1fi(x)xi

Σk
i=1fi(x)

, x ∈ K.

Finally we define Tn = PnT |Kn
. We can now apply Brouwer’s theorem to every

mapping
Tn : Kn → Kn, n = 1, 2, . . .

This yields a sequence of fixed points xn for Tn. We obtain

PnT (xn) = xn,

and hence we get

‖T (xn) − xn‖ <
1

n
.

Schauder’s theorem now follows from Theorem 1.1.

1.4 Continuity and applications

To apply the fixed point theorems above some results for continuous functions will
often be needed.

Theorem 1.8. Assume that T is a continuous mapping between two Banach spaces
X and Y . Then the following statements are true:

1. If K is a compact set in X then T (K) is a compact set in Y .

2. If Y =
�

then T attains its maximum and its minimum on every compact set
K in X, i.e. there are x0, x1 ∈ K such that

sup
x∈K

f(x) = T (x0) = max
x∈K

T (x)

and
inf
x∈K

T (x) = T (x1) = min
x∈K

T (x).

3. T is uniformly continuous on every compact set in X.

The different notions of continuity that is and will be used are: Let T : X → Y be
a mapping between two Banach spaces. Then T is called

continuous if for each x ∈ X and each ε > 0 there exists a δ = δ(x, ε) > 0 such
that for every y ∈ X

‖y − x‖X < δ ⇒ ‖T (y) − T (x)‖Y < ε.
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uniformly continuous on A , where A ⊂ X, if for each ε > 0 there exists a
δ = δ(ε) > 0 such that for every x, y ∈ A we have

‖y − x‖X < δ ⇒ ‖T (y) − T (x)‖Y < ε.

If Tλ : X → Y , λ ∈ Λ is a set of mappings (finitely many or infinitely many) between
two Banach spaces then these are called

equicontinuous on A , where A ⊂ X, if for each ε > 0 there exists a δ = δ(ε) > 0
such that for every pair of elements x, y ∈ A and every λ ∈ Λ we have

‖y − x‖X < δ ⇒ ‖Tλ(y) − Tλ(x)‖Y < ε.

Proof. (of Theorem 1.8) To prove statement 1) let T : X → Y be a continuous
mapping and K a compact set in X. Pick an arbitrary sequence (yn) ⊂ T (K). Then
there exists a sequence (xn) in K such that T (xn) = yn for all n. The sequence (xn)
might not be uniquely determined since T is not assumed to be injective. But since
K is a compact set there exists a convergent subsequence (xnk

) of (xn) in K, i.e.
there is an element x ∈ K such that xnk

→ x as k → ∞. Moreover since T is
continuous we have

xnk
→ x ⇒ ynk

= T (xnk
) → T (x) ∈ T (K).

This proves 1).

The proof of statement 2) is left as an exercise.

To prove statement 3) assume that K is a compact set of X and that T : X → Y is
continuous. Moreover assume that T is not uniformly continuous on K. Then there
exists an ε > 0 such that for all positive integers n there are points xn, yn ∈ K such
that

‖yn − xn‖X <
1

n
(2)

and
‖T (yn) − T (xn)‖Y ≥ ε. (3)

But K is a compact set and so there exists a convergent subsequence (xnk
) of (xn),

i.e. for some x ∈ K we have xnk
→ x. From (2) it follows that ynk

→ x since we
have

‖ynk
− x‖X ≤ ‖ynk

− xnk
‖X + ‖xnk

− x‖X .

Moreover T is continuous and so T (xnk
) → T (x) and T (ynk

) → T (x). This gives a
contradiction of (3). The statement 3) is proved.

The Banach spaces that will be used in applications are C(A) and Lp(A), 1 ≤ p < ∞.
Here A stands for different subsets of

� n for n ≥ 1. Of course the norms should be
the proper ones e.g. the sup-norm should be used for C(A). We tacitly understand
that the proper norm is used unless something else is stated. In the context of
Schauder’s fixed point theorem it is important to be able to conclude whether or
not a subset of C(A) or Lp(A) is compact. Our next result answers that question
for the case C(A).
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Theorem 1.9 (Arzela-Ascoli theorem). Assume that K is a compact set in
� n,

n ≥ 1 (e.g. K = [a, b] ⊂
�

). Then a set S ⊂ C(K) is relatively compact in C(K)
iff the functions in S are uniformly bounded and equicontinuous on K.

To say that the functions in S are uniformly bounded means that there exists a
M > 0 such that

‖f‖ = sup
x∈K

|f(x)| ≤ M all f ∈ S.

To say that the functions in S are equicontinuous on K means that for every ε > 0
there exists an δ > 0 such that for every x, y ∈ K and every f ∈ S we have

|x − y| < δ ⇒ |f(x) − f(y)| < ε.

The Arzela-Ascoli theorem can be generalized to the whole of
� n if we assume that

the functions uniformly tends to 0 at infinity i.e. as |x| → ∞.

Next we formulate a criteria for compactness for sets of Lp-functions.

Theorem 1.10 (Riesz, Kolmogorov). Assume that 1 ≤ p < ∞ and that S ⊂
Lp(

� n). Then S is relatively compact in Lp(
� n) iff the following conditions are

satisfied:

1. S is a bounded set in Lp(
� n), i.e. there exists a M > 0 such that ‖f‖Lp ≤ M

for all f ∈ S,

2. limx→0

∫ �

n |f(y + x)− f(y)|p dy = 0 uniformly in S, i.e. for every ε > 0 there
exists a δ > 0 such that

|x| < δ och f ∈ S ⇒ ‖f(· + x) − f(·)‖ ≡ (

∫

�

n

|f(y + x) − f(y)|p dy)1/p < ε,

3. limR→∞ ‖f‖Lp(

�

n\B(0,R)) = (
∫

|x|>R
|f(x)|p dx)1/p = 0 uniformly in S, i.e. for

every ε > 0 there exists a ω > 0 such that

R > ω och f ∈ S ⇒ (

∫

|x|>R

|f(x)|p dx)1/p < ε.

We are now ready to apply Schauder’s theorem. In general, we note the difference
in applying Schauder’s theorem to applying Banach’s theorem, namely to apply
Banach’s theorem we have to show that a mapping is sufficiently small, while to
apply Schauder’s theorem we have to prove that a mapping is compact. This means
that, in the C(A) or Lp case, we have to show that the image set for the mapping
consists of more “regular” functions.

Example (an integral equation of Hammerstein-type): Assume that K(x, y)
is a continuous function for 0 ≤ x, y ≤ 1 and that f(y, z) is a bounded continuous
function for 0 ≤ y ≤ 1 and z ∈

�
. Then the equation

z(x) =

∫ 1

0

K(x, y)f(y, z(y)) dy
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has a continuous solution z(x).

We want to prove that T (z), z ∈ C([0, 1]), has a fixed point where (T (z))(x) =
∫ 1

0
K(x, y)f(y, z(y)) dy. To show this we will apply the generalization of Schauder’s

fixed point theorem. We will choose a closed convex subset S ⊂ C([0, 1]) such that
the mapping T : S → C([0, 1]) is continuous and the image set T (S) is relatively
compact in C([0, 1]).

First we observe that T maps continuous functions to continuous functions, i.e. that
we have

T (C([0, 1])) ⊂ C([0, 1]).

This can be seen as follows: From the hypothesis there exists a B > 0 such that

|f(y, z)| ≤ B if (y, z) ∈ [0, 1] ×
�

.

Moreover K(x, y) is continuous on the compact set [0, 1] × [0, 1] and hence K is
uniformly continuous on [0, 1] × [0, 1]. Fix an ε > 0. Then there exists a δ > 0 such
that

|K(x, y) − K(x̃, ỹ)| <
ε

B
if |(x, y) − (x̃, ỹ)| < δ.

Consequently for arbitrary z ∈ C([0, 1]) we have

|(T (z))(x) − (T (z))(x̃)| = |

∫ 1

0

(K(x, y) − K(x̃, y))f(y, z(y)) dy| ≤

≤

∫ 1

0

|K(x, y) − K(x̃, y)||f(y, z(y))| dy ≤ B

∫ 1

0

|K(x, y) − K(x̃, y)| dy < ε

provided |x − x̃| < δ. This means that T (z) ∈ C([0, 1]).

A natural choice for the closed convex set S is as follows:

S = {u ∈ C([0, 1]) : ‖u‖ ≤ D},

where D > 0 is a constant that should be chosen such that T (S) ⊂ S. Here we note
that since K is continuous on the compact set [0, 1] × [0, 1] there exists an A > 0
such that

|K(x, y)| ≤ A if (x, y) ∈ [0, 1] × [0, 1].

This implies that

|(T (z))(x)| = |

∫ 1

0

K(x, y)f(y, z(y)) dy| ≤

∫ 1

0

|K(x, y)||f(y, z(y))| dy ≤ AB.

We get
‖T (z)‖ ≤ D

provided we choose D ≥ AB. For instance set D = AB. With this choice for S we
get

T (S) ⊂ S.

To apply Schauder’s theorem we have to show that T (S) is relatively compact in
C([0, 1]) and that T is continuous on S. The relatively compactness is consequence
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of Arzela-Ascoli theorem once we have shown that T (S) is uniformly bounded and
equicontinuous on S.

We have above verified that T (C([0, 1])) is uniformly bounded and equicontinuous
on S. It remains to prove that T : S → T (S) is continuous. From the definition of S

it follows that |z(x)| ≤ D for all x ∈ [0, 1]. The continuity of f(y, z) on the compact
set [0, 1] × [−D,D] implies that f is uniformly continuous on [0, 1] × [−D,D]. Fix
an arbitrary ε > 0. Then there exists a δ > 0 such that

|f(y, z) − f(ỹ, z̃)| <
ε

A
if |(y, z) − (ỹ, z̃)| < δ.

Hence for arbitrary z1, z2 ∈ S we have

‖T (z1) − T (z2)‖ = sup
x∈[0,1]

|

∫ 1

0

K(x, y)(f(y, z1(y)) − f(y, z2(y))) dy| ≤

≤ sup
x∈[0,1]

∫ 1

0

|K(x, y)||(f(y, z1(y)) − f(y, z2(y)))| dy ≤

≤ A

∫ 1

0

|(f(y, z1(y)) − f(y, z2(y)))| dy < ε.

Now we have shown that T is continuous on S. Schauder’s fixed point theorem
implies that the equation z = T (z) has at least one solution.

1.5 Some more fixed point theorems

We conclude the note with some additional fixed point theorems. The first one,
Schaefer’s fixed point theorem, is a version of Schauder’s theorem. Sometimes it is
called the Leray-Schauder principle and is an example of the mathematical principle
saying ”apriori estimates implies existence”. The second one, Krasnoselskii’s fixed
point theorem, is a mixture of Banach’s and Schauder’s fixed point theorems.

Theorem 1.11 (Schaefer’s fixed point theorem). Assume that X is a Banach
space and that T : X → X is a continuous compact7 mapping. Moreover assume
that the set ⋃

0≤λ≤1

{x ∈ X : x = λT (x)}

is bounded. Then T has a fixed point.

Proof. Assume that the mapping T satisfies the hypothesis in the theorem. Pick a
R > 0 such that

x = λT (x) and 0 ≤ λ ≤ 1

7T is a compact mapping if (T (xn))∞
n=1 has a convergent subsequence for every bounded se-

quence (xn)∞
n=1 in X. Usually by a compact (or completely continuous) mapping one means a

continuous mapping with the property above. For linear mappings the continuity follows from this
property but it is not true in general for nonlinear mappings.
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implies that

‖x‖ < R.

Define the mapping T̃ : X → X as follows:

T̃ (x) =







T (x), if ‖T (x)‖ ≤ R

R
‖T (x)‖

T (x) if ‖T (x)‖ > R

This implies that T̃ : X → X is a compact operator. To show this take a
bounded sequence (xn)∞n=1 in X. Then there exists a subsequence (xnk

)∞k=1 such
that ‖T (xnk

)‖ < R for all k or ‖T (xnk
)‖ ≥ R for all k. In the first case (T̃ (xnk

))∞k=1

has a convergent subsequence since T̃ (xnk
) = T (xnk

) and T is a compact mapping.
In the second case we get that (T (xnk

))∞k=1 has a convergent subsequence, denote it
by (T (xl))

∞
l=1 for convenience. But then it follows that also (‖T (xl)‖)

∞
l=1 converges,

where also ‖T (xl)‖ ≥ R for all l. Hence we obtain T̃ (xl) = R
‖T (xl)‖

T (xl).

Set

K = co T̃ (B(0, R)).

Here K is convex (it is the convex hull of a set), compact (the convex hull of a
compact set is compact and T̃ is a compact mapping) subset of X such that

T̃ : K → K.

Schauder’s fixed point theorem implies that T̃ has a fixed point x0 ∈ K. But x0

is a fixed point for T if ‖T (x0)‖ ≤ R. Assume that ‖T (x0)‖ > R. This yields a
contradiction since x0 = T̃ (x0) = λT (x0), where λ = R

‖T (x0)‖
∈ (0, 1), since according

to the hypothesis of the theorem it should follow that ‖T (x0)‖ = ‖x0‖ < R. This
proves the theorem.

In particular, note that to apply Schaefer’s theorem we do not need to prove that a
certain set is convex or compact. The problem is reformulated as to show certain a
priori estimates for the operator T .

Theorem 1.12 (Krasnoselskii’s fixed point theorem). Assume that F is a
closed bounded convex subset of a Banach space X. Furthermore assume that T1

and T2 are mappings from F into X such that

1. T1(x) + T2(y) ∈ F for all x, y ∈ F ,

2. T1 is a contraction,

3. T2 is continuous and compact.

Then T1 + T2 has a fixed point in F .

14



Proof. Assume that the mappings T1, T2 satisfies the hypothesis of the theorem. In
particular there exists a c ∈ (0, 1) such that

‖T1(x) − T1(y)‖ ≤ c‖x − y‖, x, y ∈ F.

This yields

‖(I − T1)(x) − (I − T1)(z)‖ ≥ ‖x − z‖ − ‖T1(x) − T1(z)‖ ≥ (1 − c)‖x − z‖

and

‖(I − T1)(x) − (I − T1)(z)‖ ≤ ‖x − z‖ + ‖T1(x) − T1(z)‖ ≤ (1 + c)‖x − z‖.

Consequently I − T1 : F → (I − T1)(F ) is a homeomorphism, and (I − T1)
−1 exists

as a continuous mapping from (I−T1)(F ). Furthermore we note that for each y ∈ F

the equation
x = T1(x) + T2(y)

has a unique solution x ∈ F according to Banach’s fixed point theorem. From this we
conclude that T2(y) ∈ (I−T1)(F ) for every y ∈ F and also that (I−T1)

−1T2 : F → F

is a well-defined continuous mapping. Since T2 is a compact mapping it follows that
(I−T1)

−1T2 : F → F is a compact mapping. Finally the generalization of Schauder’s
fixed point theorem yields the conclusion of the theorem.

We conclude the note by recommending anyone interested in fixed point theorems
to browse through the book [6] by Smart where additional results and many more
references can be found.
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