

6th April 2004

TMA401 Functional Analysis MAN670 Applied Functional Analysis 4th quarter 2003/2004

All document concerning the course can be found on the course home page: http://www.math.chalmers.se/Math/Grundutb/CTH/tma401/

Home Assignment 1

Problem 1: Let Y be a finite dimensional subspace of a normed space X. Show that Y is closed.

- **Problem 2:** Show that l^1 (as a vector space) is a subspace of l^2 . Is this subspace closed in l^2 with the l^2 -norm?
- **Problem 3:** Let X be a normed space. Show that X is finitedimensional if and only if every closed and bounded set in X is compact.

Problem 4: Set $X = l^2$ with the $|| ||_{l^2}$ -norm and define the mappings T_1, T_2 by

$$T_1(x_1, x_2, x_3, \dots, x_n, \dots) = (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots, \frac{1}{n}x_n, \dots)$$

and

$$T_2(x_1, x_2, x_3, \dots, x_n, \dots) = (x_1, x_2^2, x_3^3, \dots, x_n^n, \dots)$$

for $(x_1, x_2, x_3, \ldots, x_n, \ldots) \in l^2$. Is T_1 a linear mapping? Is T_2 a linear mapping? Is T_1 continuous at any point in l^2 ? Is T_2 continuous at any point in l^2 ? Calculate

$$\sup\{\|T(x_1, x_2, x_3, \dots, x_n, \dots)\|_{l^2} : \|(x_1, x_2, x_3, \dots, x_n, \dots)\|_{l^2} \le r\}$$

for all r > 0 for both T equal to T_1 and to T_2 . Explain the difference.

Problem 5: Let X be a Banach space and let $T_n \in \mathcal{B}(X, X)$, n = 1, 2, 3, ... Assume that $\lim_{n\to\infty} T_n x$ exists for every $x \in X$. Show that $T \in \mathcal{B}(X, X)$ where T is defined by

$$Tx = \lim_{n \to \infty} T_n x$$

for $x \in X$.

The solutions should be handed in at the latest on Friday April 30.