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Solutions to home assignments (sketches)

Problem 1: Let Y be a finite-dimensional subspace of a normed space X. Show that Y is closed.

Solution: It is enough to show that if (yn)∞n=1 is a sequence in Y converging to some element y

in X then y ∈ Y . So assume that (yn)∞n=1 is a sequence in Y convering in X and call the
limit element y. Fix a basis e1, e2, . . . , en in Y . Every element yn can be written in the form

yn = Σn
k=1α

(n)
k ek.

Moreover all norms on finite-dimensional spaces, here we consider the space Y with the
induced norm from X, are equivalent and we see that ‖z‖ = Σn

k=1|αk|, where z = Σn
k=1αkek,

defines a norm. This implies that (α
(n)
k )∞n=1, k = 1, 2, . . . , n, are Cauchy sequences in

�
(if

Y is a complex normed space) and hence converges. Call the limits α̃k, k = 1, 2, . . . , n. Set
ỹ = Σn

k=1α̃kek. This implies that yn → ỹ in Y and since yn → y in X we have y = ỹ ∈ Y .
This proves that Y is closed.

Problem 2: Show that l
1 (as a vector space) is a subspace of l

2. Is this subspace closed in l
2

with the l
2-norm?

Solution: Let � = (x1, x2, . . .) ∈ l
1. Since

Σn
k=1|xk|2 ≤ (Σn

k=1|xk|)2

holds true for every positive integer n we obtain

‖ � ‖l2 ≤ ‖ � ‖l1 < ∞

and � ∈ l
2. Moreover since l

1 is a vector space we see that l
1 is a subspace of l

2. To see that
l
1 is not closed in l

2 consider for instance the sequence ( � n)∞n=1 where

� n = (1,
1

2
,
1

3
, . . . ,

1

n
, 0, 0, . . .).

Here � n ∈ l
1 for all n and � n → � in l

2 where � = (1, 1
2 , 1

3 , . . .). This is clear since

‖ � n − � ‖l2 = (Σ∞
k=n+1|

1

k
|2) 1

2 → 0

as n → ∞.

Problem 3: Let X be a normed space. Show that X is finitedimensional if and only if every
closed and bounded set in X is compact.

Solution: Will be given later since it is quite long, but not very difficult, to prove using Riesz
lemma in ”one direction”.
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Problem 4: Set X = l
2 with the ‖ ‖l2-norm and define the mappings T1, T2 by

T1(x1, x2, x3, . . . , xn, . . .) = (x1,
1

2
x2,

1

3
x3, . . . ,

1

n
xn, . . .)

and
T2(x1, x2, x3, . . . , xn, . . .) = (x1, x

2
2, x

3
3, . . . , x

n
n, . . .)

for (x1, x2, x3, . . . , xn, . . .) ∈ l
2. Is T1 a linear mapping? Is T2 a linear mapping? Is T1

continuous at any point in l
2? Is T2 continuous at any point in l

2? Calculate

sup{‖T (x1, x2, x3, . . . , xn, . . .)‖l2 : ‖(x1, x2, x3, . . . , xn, . . .)‖l2 ≤ r}

for all r > 0 for both T equal to T1 and to T2. Explain the difference.

Solution: It is easily seen that T1 is a linear mapping and that T2 is not a linear mapping on l
2.

It is also easy to see that the operator norm of T1 is equal to 1 and that

sup{‖T1( � )‖ : ‖ � ‖ < r} = r

for every r > 0. Since T1 is a bounded linear mapping it is also continuous at every � ∈ l
2.

It remains to treat the mapping T2. First we see that T2( � ) ∈ l
2 for every � ∈ l

2. To see this
we fix a � = (x1, x2, x3, . . . ) ∈ l

2. From (Σ∞
n=1|xn|2)1/2 < ∞ it follows that there exists an

integer N such that |xn| ≤ 1 for all n ≥ N . This implies that

‖T2(x1, x2, x3, . . .)‖l2 = ‖(x1, x
2
2, x

3
3, . . .)‖l2 ≤

≤ {∆ − inequality} ≤
≤ ‖(x1, x

2
2, . . . , x

N−1
N−1, 0, 0, . . .)‖l2 + ‖(0, 0, . . . , 0, xN

N , xN+1
N+1, . . .)‖l2 ≤

≤ ‖(x1, x
2
2, . . . , x

N−1
N−1, 0, 0, . . .)‖l2

︸ ︷︷ ︸

<∞

+ ‖(0, 0, . . . , 0, xN , xN+1, . . .)‖l2

︸ ︷︷ ︸

<∞

< ∞

and hence � ∈ l
2.

We easily see that

sup{‖T2( � )‖ : ‖ � ‖ < r} =

{
r 0 ≤ r ≤ 1
∞ 1 < r.

Here the last statement follows e.g. from the observation that

T2(0, 0, . . . ,
r + 1

2
︸ ︷︷ ︸

position n

, 0, . . .) = (0, 0, . . . , (
r + 1

2
)n

︸ ︷︷ ︸

position n

, 0, . . .)

and letting n → ∞.

Finally we observe that T2 is continuous at every � ∈ l
2. To prove this fix a � ∈ l

2 and a
sequence ( � k)∞k=1 in l

2 such that � k → � in l
2. Set

� = (x1, x2, x3, . . .)

and
� k = (x

(k)
1 , x

(k)
2 , x

(k)
3 , . . .), k = 1, 2, . . . .

Since � ∈ l
2 there exists an integer N such that

|xn| <
1

2
for all n ≥ N,

and since � k → � i l
2 there exists an integer K such that

‖ � k − � ‖l2 <
1

4
k ≥ K.

This implies that

|x(k)
n | ≤ |x(k)

n − xn| + |xn| <
1

4
+

1

2
=

3

4
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for all n ≥ N, k ≥ K. Now fix an ε > 0. We see that

‖T2( � k) − T2( � )‖l2 = (Σ∞
n=1|(x(k)

n )n − (xn)n|2)1/2 ≤
≤ {∆ − inequality} ≤
≤ (ΣN−1

n=1 |(x(k)
n )n − (xn)n|2)1/2 + (Σ∞

n=N |(x(k)
n )n − (xn)n|2)1/2

where

|(x(k)
n )n − (xn)n| ≤ |x(k)

n − xn|Σn−1
l=0 |x(k)

n |l|xn|n−1−l ≤

≤ |x(k)
n − xn| · n(

3

4
)n−1

for all n ≥ N and k ≥ K. However supn∈ � +
n · ( 3

4 )n−1 ≡ C < ∞. This finally implies that

‖T2( � k) − T2( � )‖l2 ≤ (ΣN−1
n=1 |(x(k)

n )n − (xn)n|2)1/2

︸ ︷︷ ︸

→0

since � k → � in l
2

because it implies that
x(k)

n
→xn,k→∞

for all n.

+C (Σ∞
n=N |x(k)

n − xn|2)1/2

︸ ︷︷ ︸

→0

since � k → � in l
2

Note that we have proven that both T1 and T2 are continuous at every point. However,
continuity for a nonlinear mapping does not imply that it maps bounded sets onto bounded
sets while this is true for every linear mapping.

Problem 5: Let X be a Banach space and let Tn ∈ B(X,X), n = 1, 2, 3, . . . Assume that
limn→∞ Tnx exists for every x ∈ X. Show that T ∈ B(X,X) where T is defined by

Tx = lim
n→∞

Tnx

for x ∈ X.

Solution: Clearly T is a linear mapping on X since

T (αx + βy) = lim
n→∞

Tn(αx + βy) = lim
n→∞

(αTn(x) + βTn(y)) =

= α lim
n→∞

Tn(x) + β lim
n→∞

Tn(y) = αT (x) + βT (y)

for every x, y ∈ X and all scalars α, β. Moreover since for all x ∈ X the sequence (Tn(x))∞n=1

converges, and hence is bounded, we conclude from the Banach-Steinhaus Theorem that the
sequence (‖Tn‖)∞n=1 is bounded. This yields

‖T (x)‖ = ‖ lim
n→∞

Tn(x)‖ = lim
n→∞

‖Tn(x)‖ ≤ (sup
n

‖Tn‖)‖x‖,

for all x ∈ X. This shows that T is a bounded linear mapping on X.

Problem 6: Let T : H → H be a compact linear operator on a Hilbert space H. Show that I +T

is compact if and only if H is finite-dimensional. Here I denotes the identity operator on H.

Solution: If H is an infinite-dimensional Hilbert space there exists an ON-sequence (en)∞n=1 in
H. Here en ⇀ 0 and so T (en) → 0 since T is compact. From this we see that the sequence
((I + T )(en))∞n=1 can not have any convergent subsequence since for n 6= m

√
2 = ‖en − em‖ ≤ ‖(I + T )(en) − (I + T )(em)‖ + ‖T (en)‖ + ‖T (em)‖

and so
‖(I + T )(en) − (I + T )(em)‖ ≥

√
2 − ‖T (en)‖ − ‖T (em)‖ →

√
2

as n,m → ∞, n 6= m. On the other hand, if H is finite-dimensional Hilbert space then I is
a compact operator and so I + T is compact.

Problem 7: Set

Tf(x) =

∫ π

0

cos(x − y)f(y) dy, 0 ≤ x ≤ π.

Find the norm of T where T is regarded as an operator on L2([0, π]).
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Solution: (sketch) T is a self-adjoint (k(x, y) = cos(x − y) satisfies k(x, y) = k(y, x)) com-
pact (k ∈ L2([0, π] × [0, π])) linear operator on the Hilbert space L2([0, π]). Hence ‖T‖ =
supλ eigenvalue |λ|. It is an easy exercise to calculate the eigenvalues to T .

Problem 8: Prove the existence and uniqueness of solution to the following boundary value
problem: {

4u′′(x) = |x + u(x)|, 0 ≤ x ≤ 1
u(0) − 2u(1) = u′(0) − 2u′(1) = 0, u ∈ C2([0, 1]).

Solution: Standard problem. Calculations are omitted.

Problem 9: Let (xn)∞n=1 be a bounded sequence in a separable Hilbert space H. Show that there
exists a subsequence (xnk

)∞k=1 and an x ∈ H such that

xnk
⇀ x.

What happens if H is not separable?

Solution: (sketch) Assume that H is a separable Hilbert space and that (ek)∞k=1 is an ON-basis.
Applying a ”diagonal sequence”-argument as in Theorem 4.8.5 we obtain a subsequence
(xpn

)∞n=1 of (xn)∞n=1 such that 〈xpn
, ek〉 converges for all k = 1, 2, . . . Call the limits αk. Set

M = supn ‖xn‖. Here M < ∞ by the hypothesis. Note that

Σ∞
k=1|〈xpn

, ek〉|2 = ‖xpn
‖ ≤ M2

by Parseval’s formula and letting n → ∞ we conclude

Σ∞
k=1|αk|2 ≤ M2.

Now fix an arbitrary x ∈ H. We obtain

〈xpn
, x〉 = 〈xpn

,Σ∞
k=1〈x, ek〉ek〉 =

= Σ∞
k=1〈x, ek〉〈xpn

, ek〉 = Σ∞
k=1〈x, ek〉αk + Σ∞

k=1〈x, ek〉(〈xpn
, ek〉 − αk)

and so

|〈xpn
, x〉−Σ∞

k=1〈x, ek〉αk| ≤ ΣN
k=1|〈x, ek〉||(〈xpn

, ek〉−αk)|+Σ∞
k=N+1|〈x, ek〉||(〈xpn

, ek〉−αk)|.

For fixt N the first term on the RHS tends to 0 as n → ∞ while the second term can be
estimated from above, using the Cauchy-Schwartz inequality, by

(Σ∞
k=N+1|〈x, ek〉|2)

1
2 2M.

which tends to 0 as N → ∞.Hence we have that |〈xpn
, x〉 converges as n → ∞. (We also see

that xpn
→ Σ∞

k=1αkek)

Finally, if H is not separable consider let H̃ denote the closure of the linear span of the set
{xn : n = 1, 2, . . .}. Then H̃ is a Hilbert space containing all xn. Moreover H̃ is separable
(possibly finite-dimensional) since an ON-basis can be constructed by the Gram-Schmidt
process applied to the sequence (xn)∞n=1. By the construction above we have a subsequence
(xpn

)∞n=1 that converges weakly on H̃. Now 〈xpn
, x〉 converges for every x ∈ H as n → ∞

since every x can be decomposed as y + z, y ∈ H̃ and z ∈ H̃⊥ and 〈xpn
, z〉 = 0.

Problem 10: Let T : H → H be a compact positive self-adjoint operator on a Hilbert space H.
Moreover assume that ‖T‖ ≤ 2. Give an estimate1 for

‖T 2 − 3T + I‖.
1better than the trivial estimate ‖T 2 − 3T + I‖ ≤ 11.
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Solution: (sketch) Applying the Hilbert-Schmidt theorem we have an ON-sequence (en)∞n=1 of
eigenvectors corresponding to the non-zero eigenvalues (λn)∞n=1 to T such that T |S = 0,

where S = Span{en : n = 1, 2, . . .}⊥. Moreover we know that 0 < λn ≤ 2 for all n. This
yields

‖(T 2−3T+I)x‖2 = ‖Σ∞
n=1(λ

2
n−3λn+1)〈x, en〉en‖2 = Σ∞

n=1|λ2
n−3λn+1|2|〈x, en〉|2 ≤ (

5

4
‖x‖)2

for all x ∈ Span{en : n = 1, 2, . . .}. Here we have used Parseval’s formula together with

max
0≤x≤2

|x2 − 3x + 1| =
5

4
.

For z ∈ S we get (T 2 − 3T + I)(z) = z and hence ‖(T 2 − 3T + I)(z)‖ = ‖z‖. Finally if x ∈ H

then x = y + z, where y ∈ Span{en : n = 1, 2, . . .} and z ∈ S = Span{en : n = 1, 2, . . .}⊥, we
get

‖(T 2 − 3T + I)(x)‖2 = ‖(T 2 − 3T + I)(y + z)‖2 =

= ‖(T 2 − 3T + I)(y)‖2 + ‖(T 2 − 3T + I)(z)‖2 ≤

≤ (
5

4
)2‖y‖2 + ‖z‖2 ≤ (

5

4
)2(‖y‖2 + ‖z‖2) = (

5

4
)2‖x‖2.

We conclude that ‖T 2 − 3T + I‖ ≤ 5
4 .

The written exam will take place in the V-building on May 29.


