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1 A Note on Lp–spaces

1.1 Introduction

A basic feature for the important results in this course – Banach’s fixed point
theorem, Brouwer’s fixed point theorem, Schauder’s fixed point theorem, Hilbert-
Schmidt theorem and others – is that the mappings appearing are defined on com-
plete normed spaces, i.e. on Banach spaces. The completeness is crucial and the
theorems would no longer be true without the assumption on completeness.

A technique often used to prove the existence of a solution to a problem (and also to
find the solution) is to find solutions to approximate problems and by improving the
approximations it can be possible to obtain a sequence of approximative solutions
that form a Cauchy sequence in a proper space. A solution of the original problem
can then often be obtained as the limit for the Cauchy sequence provided the space
is a Banach space.

Example of a function space that has been treated is the vector space consisting
of the continuous functions defined on

� n or some “nice”1 subset Ω of
� n, with

pointwise defined addition and multiplication by scalar. We note the if C(Ω) is
equipped with the sup-norm, i.e.

‖f‖ = sup
t∈Ω

|f(t)|, f ∈ C(Ω),

then the normed space (C(Ω), ‖·‖) becomes a Banach space. But if C(Ω) is supplied
with the norm

‖f‖1 =

∫

Ω

|f(t)| dt, f ∈ C(Ω),

then (C(Ω), ‖ · ‖1) is a normed space but not a Banach space. See for instance
example 1 below. The set Ω is supposed to be a compact subset of

� n so all
integrals are finite. It is a pity that (C(Ω), ‖ · ‖1) is not a Banach space since the
norm ‖ · ‖1 is natural. If f is a density function then ‖f‖1 corresponds to the total
mass. Moreover in physics the integral

‖f‖2 = (

∫

Ω

|f(t)|2 dt)1/2, f ∈ C(Ω).

measures the“energy”of a system described by f . In general it is natural to consider
norms

‖f‖p = (

∫

Ω

|f(t)|p dt)1/p, f ∈ C(Ω),

1We assume that Ω is compact and equal to the closure of its interior.
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where p ∈ [1,∞). To see that these expressions really define norm functions can be
done with same technique that was used to prove the corresponding statements for
the sequence spaces lp .

Example 1: Consider the set Ω = [0, 1] ⊂
�

and define

fn(t) =







0 t ∈ [0, 1
2
)

2n(t − 1
2
) t ∈ [1

2
, 1

2
+ 1

2n
)

1 t ∈ [1
2

+ 1
2n

, 1]

for n = 1, 2, . . . Sketch the graph for fn here!

We see that (fn)∞n=1 defines a Cauchy sequence in the normed space (C[0, 1], ‖ ‖1)
since

‖fn − fm‖1 =

∫ 1
2
+ 1

2 min(n,m)

1
2

|fn(t) − fm(t)| dt

≤
1

2 min(n,m)
→ 0, n,m → ∞.

However there is no continuous function f such that fn → f in (C[0, 1], ‖ ‖1). Prove
this! On the other hand the sequence (fn)∞n=1 converges pointwise to h given by

h(t) =

{

0 t ∈ [0, 1
2
]

1 t ∈ (1
2
, 1]

.

h is not continuous but still Riemann integrable and satisfies

lim
n→∞

‖fn − h‖1 = 0.

The fact that the function h above is Riemann integrable might suggest that the
normed space

(Riemann integrable functions, ‖ · ‖1) (1)

is a Banach space. It is clear that linear combinations of Riemann integrable func-
tions are Riemann integrable and that products of Riemann integrable functions are
Riemann integrable2. However Riemann integrable functions are not closed under
pointwise limits as seen from the following example.

2If f is Riemann integrable then so is f 2 and if both f and g are Riemann integrable then so
is fg since fg = 1

4
((f + g)2 − (f − g)2).
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Example 2: Let Ω denote the interval [0, 1] and let {r1, r2, r3, . . .} be an enumera-
tion of all rational numbers in the interval [0, 1]. For n = 1, 2, . . . define

fn(t) = χ{r1,...,rn}(t) =

{

1 t ∈ {r1, . . . , rn}
0 t 6∈ {r1, . . . , rn}

.

Moreover set

f(t) = χ{r1,r2,r3,...}(t) =

{

1 t ∈ {r1, r2, r3, . . .}
0 t 6∈ {r1, r2, r3, . . .}

.

We note that fn is Riemann integrable for every n and that (fn)∞n=1 is a Cauchy
sequence in the normed space (Riemann integrable functions, ‖ · ‖1), but the point-
wise limit function f is not Riemann integrable. Prove this! This implies that if we
want to have a Banach space containing all Riemann integrable functions we ought
accept f as an element in that space since it is the pointwise limit of the sequence
(fn(x)) (we also have 0 ≤ fn(x) ↑ f(x) ≤ 1 for all x ∈ [0, 1]). In applications it will
be important for us to have strong convergence theorems of the form

lim
n→∞

∫

fn dx =

∫

lim
n→∞

fn dx.

At the same time we note that f 6= 0, where 0 denotes the function that is pointwise
0 for all x ∈ [0, 1], but nether the less we have ‖f −0‖1 = 0. This means that we can
not detect the difference measuring with the ‖ · ‖1–norm and have to identify these
functions. We say that the functions differs on a set of measure 0. This identification
also has to be done for Riemann integrable functions for ‖ · ‖1 to be a norm.

Considering the ‖ · ‖p–norms, 1 ≤ p < ∞ in general, it can be observed that only for
p = 2 the norm is a Hilbert space norm, i.e. there can be defined a inner product
〈·, ·〉 on the vector space such that the following relation between the inner product
and the norm holds true: ‖x‖ =

√

〈x, x〉 for all x. Neither the sup-norm can be
connected with an inner product. The Hilbert space structure will be important to
us in connection with spectral theory in chapter 4 in [2]. However ‖ · ‖2 will be a
Hilbert space norm.

The problem is now to extend the normed space (C(Ω), ‖ · ‖p) in such a way that
we obtain a Banach space. The method to complete the space that is discussed in
section 7 chapter 1 in [2] has the disadvantage that the properties of the elements
in the completion can be hard to read off and it is not obvious that the elements
are pointwise defined functions.

We will below in very few words discuss the main properties of the Lebesgue integrals
and the Lp–spaces. Some ideas for the proofs will be sketched. For those who are
interested in a thorough treatment we refer to the books by Folland [3] (textbook
on graduate level), Rudin [5] (also a graduate level textbook), Rudin [6] (a more
elementary book), Apostol [1] (has been used for undergraduate courses at GU) or
why not Hörmander [4]. The presentations differ slightly but most are based on
measure theory.
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1.2 Lebesgue measure on
� n

In measure theory we want to generalize the concept of length of an interval in
�

,
area of a rectangle in

� 2 on so on to a wider class of sets. The ultimate goal is
to assign a measure to as many sets as possible where the measure has to satisfy
certain natural conditions. If the interval [a, b] ⊂

�
a, b ∈

�
(as well as the intervals

[a, b), (a, b], (a, b)) should have the measure b−a, and we want that to be true, then
there are subsets of the real numbers that are impossible to assign a measure to.
This is hard to prove and is based on the axiom of choice3.

First let us see which subsets of a an arbitrary set X it would be natural to be able
to assign measure to. Intuitively it is natural that given countable many sets, where
all have a well-defined measure, all sets that can be obtained by countably many
applications with the set operations union, intersection and complement should also
be possible to assign a measure to. This motivates the following definition.

Definition 1.1. A set M of subsets of X is called a σ–algebra if

1. ∅ ∈ M

2. E ∈ M implies X \ E ∈ M

3. E1, E2, . . . ∈ M implies
⋃∞

n=1 En ∈ M

A set in M is called a measurable set. Let Bn denote the smallest σ–algebra that
contains all open sets in

� n. This is called the Borel σ–algebra. For simplicity
we restrict to the case n = 1 but what is said holds true for general n. There exists
such a smallest σ–algebra, since the intersection of any collection of σ–algebras is a
σ–algebra, and all the intervals of the four types above are contained here.

Given a σ–algebra M we can talk about a measure µ on M. A measure should
satisfy some properties encoded in the next definition.

Definition 1.2. A measure µ on the σ–algebra M is a mapping

µ : M → [0, +∞]

such that

1. µ(∅) = 0

2. E1, E2, . . . ∈ M mutually disjoint sets implies µ(
⋃∞

n=1 En) = Σ∞
n=1µ(En)

The property 2. is called countable additivity for measures and is a key property
when defining Lebesgue integrals. The main question is now whether it is possible
to prove the existence of a unique measure on the Borel σ–algebra with the property

3The axiom of choice says that for every class of non-empty sets Eλ, λ ∈ Λ, there exists a set
consisting of one element from every set Eλ.
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that all intervals with end points at a and b has the measure |b − a|. The answer is
yes and this measure is called the Borel measure. This is the foundation on which
the Lp-theory rests. The Lebesgue measure is obtained by completing the Borel
measure in the following sense.

Definition 1.3. Let µ be a measure on a σ–algebra M. Then there exists a σ–
algebra M̄ and a well-defined measure µ̄ : M̄ → [0, +∞] such that E ∈ M̄ iff
E = A

⋃

B, where A ∈ M and B ⊂ C ∈ M with µ(C) = 0, and µ̄(E) = µ(A).

What has been done is to add all subsets of measurable sets with measure 0 in such
a way that also M̄ becomes a σ–algebra. Note that it follows from the definition
that if A,B ∈ M, A ⊂ B, then we have µ(A) ≤ µ(B). We call B̄1 the Lebesgue σ–
algebra on

�
and denote it by L1 and the completed Borel measure on L1 denoted

m is called the Lebesgue measure.

We mentioned above that there are subsets of
�

that are not Lebesgue measurable.
The following result can be proved.

Theorem 1.1 (Approximation). Let E ⊂
�

be Lebesgue measurable. Then we
have

m(E) = inf{m(U) : E ⊂ U, U open} = sup{m(K) : K ⊂ E, K compact}.

Moreover if m(E) < ∞ then for every ε > 0 there exists an open set A consisting
of finitely many open intervals such that

m((E \ A)
⋃

(A \ E)) < ε.

What has been said about
�

is true for
� n, n = 2, 3, . . ., provided intervals are

replaced by rectangles parallel to the axis etc. By Ln = L we denote the Lebesgue
σ–algebra on

� n, i.e. the completed Borel σ–algebra Bn, and the approximation
theorem above corresponds to a natural generalization for

� n.

1.3 Lebesgue measurable functions

We will consider functions f that takes values in ¯�
=

� ⋃

{±∞} where we define
0 · ∞ = 0. What has to be avoided is undefined expressions like ∞ − ∞. In this
section every function takes values in ¯�

. We say that the function f :
� n → ¯�

is
Lebesgue measurable if f−1([a,∞)) ∈ L for every a ∈

�
. Here f−1(U) denotes

the set {x ∈
� n : f(x) ∈ U}, i.e. the inverse image of U under f . From this definition

it follows that f−1(E) ∈ L for every Borel set E but also that all functions that can
be formed using the operations

+ · sup
n=1,2,...

inf
n=1,2,...

lim sup
n=1,2,...

lim inf
n=1,2,...

on Lebesgue measurable functions are Lebesgue measurable. More precisely, given
Lebesgue measurable functions f, g, fn, n = 1, 2, . . . then the functions
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1. f + g, fg, λf , where λ ∈
�

2. max(f, g), min(f, g)

3. supn=1,2,... fn, infn=1,2,... fn

4. lim supn→∞ fn ≡ limk→∞ supn≥k fn, lim infn→∞ fn ≡ limk→∞ infn≥k fn

are also Lebesgue measurable. It can be shown that every continuous function is
Lebesgue measurable! The most important examples of Lebesgue measurable func-
tions are the so called simple functions that are given by finite linear combinations
of characteristic functions for Lebesgue measurable sets, i.e. functions of the form

ΣN
n=1λnχEn

where χE(t) = 1 if t ∈ E and = 0 if t 6∈ E. We assume that λi 6= λj for i 6= j. Check
for yourself that the simple functions are Lebesgue measurable. The key property
for the simple functions is the following observation.

Theorem 1.2 (Approximation). Let f :
� n → [0,∞] be a Lebesgue measurable

function. Then there exists a sequence of simple functions φn, n = 1, 2, . . . such that

1. 0 ≤ φ1 ≤ φ2 ≤ φ3 ≤ . . .

2. limn→∞ φ(t) = f(t) for all t ∈
� n

3. φn converges uniformly to f on each set A ⊂
� n where f is bounded.

We note that the limit function for an increasing sequence of simple functions is
also Lebesgue measurable. But also converse, i.e. that every Lebesgue measurable
function (bounded below) can be obtained as the limit function for an increasing
sequence of simple functions.

The proof for the theorem is quite simple. Set

φn = Σ22n−1

k=0 k2−nχEk
n

+ 2nχFn
,

where
Ek

n = f−1((k2−n, (k + 1)2−n])

and
Fn = f−1((2n,∞]).

for n = 1, 2, . . .. For an f of your choice draw the graphs for φn!

Next we introduce the term almost everywhere, abbreviated a.e., which means
everywhere except on a set of measure 0. To say that the functions f and g are
equal a.e. means that the set where the functions differ must not be empty but have
the Lebesgue measure 0. In the same way fn → f pointwise a.e. means that the
set where we do not have convergence is a 0–set. Since every subset of a 0–set is a
0–set we get
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1. f Lebesgue measurable and f = g a.e. implies that g is Lebesgue measurable.

2. fn, n = 1, 2, . . ., Lebesgue measurable and fn → f pointwise a.e. implies that
f is Lebesgue measurable.

Finally f :
� n → � is called Lebesgue measurable if both Ref and Imf are Lebesgue

measurable. This is the same as saying that f−1(U) ∈ L for every open set U in � .

1.4 Integrals and convergence theorems

A complex-valued function f can uniquely be written as a sum of its real- and
imaginary part

f = Ref + i Imf,

where Ref and Imf are real-valued. Both these functions can be written as a sum
of the positive and the negative part of f . If f is real-valued we denote

f+ = max(f, 0)

and
f− = max(−f, 0).

Hence we get f = f+−f− (and |f | = f+ +f−). Since we want the integral operator

f 7→

∫

f dm

(not yet defined) to be linear on Lebesgue integrable functions we must have
∫

f dm =

∫

(Ref)+ dm −

∫

(Ref)− dm + i(

∫

(Imf)+ dm −

∫

(Ref)− dm).

So it is enough to define
∫

f dm

for all Lebesgue measurable functions f :
� n → [0,∞]. This will be done in two

steps.

Step 1 For f = ΣN
n=1λnχEn

, i.e. for a simple function f , we set
∫

f dm = ΣN
n=1λnm(En).

Step 2 If f is a Lebesgue measurable function we set
∫

f dm = sup{

∫

φ dm : φ simple function, 0 ≤ φ ≤ f}.

It can quite easily be shown that the integral is well-defined. The integral can attain
the value +∞ since we have not assumed any size condition for f . We let L+ denote
the set of all real Lebesgue measurable functions that takes values in [0,∞].
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From the definition it follows that f, g ∈ L+ and f ≤ g implies

∫

f dm ≤

∫

g dm.

Moreover we let L1 denote the set of all Lebesgue measurable functions f :
� n → �

for which

max(

∫

Ref+ dm,

∫

Ref− dm,

∫

Imf+ dm,

∫

Imf− dm) < ∞.

This is equivalent to
∫

|f | dm < ∞.

Moreover we note that

|

∫

f dm| ≤

∫

|f | dm.

Finally we define
∫

E

f dm =

∫

fχE dm,

for E a Lebesgue measurable set in
� n.

The question is then: What is the difference between the Lebesgue integral and
the Riemann integral? The answer sits in the definitions. Let us for the moment
assume that f attains its values in [0,M ] for some M > 0. Remember that the
definition of the Riemann integral is based on splitting the x–axis into a union of
tiny disjoint intervals Ik. Set Mk = supIk

f and mk = infIk
f . We get

∫

f dx ≈ ΣkMk|Ik|

provided ΣkMk|Ik| ≈ Σkmk|Ik|, where |Ik| denotes the length of the interval Ik.
With the notation ≈ we mean that the difference tends to 0 as supk |Ik| → 0. To
have this we need f to be almost constant on every interval Ik (i.e. Mk −mk ≈ 0) or
that the number of all intervals for which this is not true (i.e. Mk−mk 6≈ 0) is small.
Another way to phrase it is that f should be continuous except for a small set of
points with Lebesgue measure 0. Using our special lingo we say that f is Riemann
integrable if the set where f is discontinuous is a set of Lebesgue measure 0. In the
previous example with f = χ � T

[0,1] the set of points of discontinuity is the whole
interval [0, 1] which has Lebesgue measure equal to 1 and not 0.

The definition of the Lebesgue integral is based on splitting the y–axis into small
intervals Ik

n = [k2−n, (k + 1)2−n). Here n indicates how fine the decomposition is,
more precisely 2−n is the length of the intervals. Comparing with the definition for
simple functions (we assume that f is non-negative and M < 2n) we have

∫

f dm ≈ Σkk2−nm(Ek
n),
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where we observe that |f − φn| ≤ 2−n on Ek
n. For the sum to have a meaning

it is needed that m(Ek
n) and m(Fn) are well-defined, which is guaranteed by the

assumption that f is Lebesgue measurable. If we return to the function f = χ � T

[0,1]

we see that f is 0 except at the rational points in the interval [0, 1], which is equal
to {r1, r2, . . .}. But every set {rn} is Lebesgue measurable with the measure 0 and
a countable union of 0–sets is a 0–set. Hence we have

∫

f dm = 0.

We observe that every continuous function which is different from 0 only in a com-
pact subset of

� n is Riemann integrable, and that each Riemann integrable function
(with finite ‖ · ‖1–norm) is Lebesgue integrable and

∫

�
n

f(x) dx =

∫

f dm.

Here the LHS denotes the Riemann integral for f and the RHS denotes the Lebesgue
integral for f .

Below we list a number of theorems that will become important to us for applica-
tions. It is important to note that the Lebesgue integral is an extension for the
Riemann integral with the properties we wanted: powerful convergence theorems
and the function space (L1, ‖ · ‖1) is complete.

Theorem 1.3 (Lebesgue’s monotone convergence theorem). Let (fn)∞n=1 ⊂
L+ be a monotone increasing sequence of functions. Then we have

lim
n→∞

∫

fn dm =

∫

lim
n→∞

fn dm.

Theorem 1.4 (Fatou’s lemma). Let (fn)∞n=1 ⊂ L+ be a sequence of functions.
Then we have

∫

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫

fn dm.

Theorem 1.5 (Lebesgue’s dominated convergence theorem). Assume that
(fn)∞n=1 is a sequence of complex-valued Lebesgue measurable functions such that
limn→∞ fn = f a.e. Moreover assume that there exists a Lebesgue measurable func-
tion g such that

|fn| ≤ g ∈ L1 all n.

Then we have
f ∈ L1

and

lim
n→∞

∫

fn dm =

∫

f dm.

Theorem 1.6 (Differentiation under the integral sign). Assume that f(t, x) :
� n × [a, b] → � and that f(·, x) :

� n → � is a L1–function for each x ∈ [a, b]. Set
F (x) =

∫

f(t, x) dm(t).

• Assume that there exists a g ∈ L1 such that

|f(t, x)| ≤ g(t) all t, x.
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Then we have
lim

x→x0

F (x) = F (x0)

provided
lim

x→x0

f(t, x) = f(t, x0) all t.

• Assume that
∂f

∂x
exists and that there is a g ∈ L1 such that

|
∂f

∂x
(t, x)| ≤ g(t) all t, x.

Then F is differentiable and

F ′(x) =

∫

∂f

∂x
(t, x) dm(t).

We now assume that n = 1 and recall that a real function is continuously differen-
tiable iff

f(x) =

∫ x

a

g(t) dt

where g is a continuous real function. Furthermore we have f ′ = g. What can be
said about the function

∫ x

a

g(t) dt

where g ∈ L1?

To answer this question we introduce the concept of absolutely continuous func-
tion. We say that the real function f is absolutely continuous if for every ε > 0
there exists a δ > 0 such that

Σ|bn − an| < δ

implies that
Σ|f(bn) − f(an)| < ε.

In particular this means that f is continuous and moreover uniformly continuous on
the set where it is defined. Σ . . . stands for the sum for a finite series.

Theorem 1.7. A real function f(x) is given by
∫ x

a
g dm, where g is a locally4

Lebesgue integrable function, iff f is absolutely continuous. In that case we have
f ′ = g a.e..

From calculus course we remember that multiple Riemann integrals can be calcu-
lated by repeated integration. Is this still true for multiple Lebesgue integrals? The
answer is contained in the following result.

Theorem 1.8 (Fubini–Tonelli’s theorem). Assume that f(·, ·) is Lebesgue mea-
surable and that one of the following conditions are satisfied:

4L1

loc
is defined below.
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1. (Tonelli) f ≥ 0

2. (Fubini) one of the integrals
∫

|f(x, y)| dm(x, y),
∫

(
∫

|f(x, y)| dm(y)) dm(x),
∫

(
∫

|f(x, y)| dm(x)) dm(y) is finite.

Then the functions f(·, y), f(x, ·),
∫

f(·, y) dm(y) and
∫

f(x, ·) dm(x) are Lebesgue
measurable and
∫

|f(x, y)| dm(x, y) =

∫

(

∫

|f(x, y)| dm(y)) dm(x) =

∫

(

∫

|f(x, y)| dm(x)) dm(y).

1.5 Lp–spaces, Hölder’s and Young’s inequalities

For Lebesgue measurable functions f we define

‖f‖p = (

∫

|f |p dm)1/p p ∈ [1,∞)

and
‖f‖∞ = ess sup |f |.

Here ess sup for real-valued non-negative functions f denotes the quantity

ess supf = inf{k : k ≥ f a.e.}.

We now define the Lp–space as the set of all Lebesgue measurable functions such
that ‖f‖p < ∞. This is valid for 1 ≤ p ≤ ∞ and we see that

• ‖f − g‖p = 0 iff f = g a.e. Functions in Lp are identified if they are equal a.e.

• f ∈ Lp implies that |f | < ∞ a.e.

• f ∈ L∞ and f continuous implies that ‖f‖∞ = sup |f |. If f is not continuous
then we obtain that the set of all x where f(x) > ‖f‖∞ is a 0–set.

We claim that ‖ · ‖p really defines a norm. If p = 1,∞ this is trivial. For p ∈ (1,∞)
it is a consequence of Hölder’s inequality

‖fg‖1 ≤ ‖f‖p ‖g‖q,

where
1

p
+

1

q
= 1, p, q > 1. This is established with a similar technique to that

which was used for proving the corresponding statement for the sequence space l p .
This yields the Minkowski’s inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p

for p ∈ [1,∞].

So we have now defined Lp as a normed space. The notations L
p
loc denotes the set of

all Lebesgue measurable functions f for which fχE ∈ Lp for all compact Lebesgue
measurable sets E in

� n.
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Theorem 1.9. Lp with the norm ‖ · ‖p is a Banach space for p ∈ [1,∞]. It is
separable (there exists a countable dense set) for p ∈ [1,∞). If (fn)∞n=1 is a Cauchy
sequence in Lp for p ∈ [1,∞) there exists a subsequence (fnk

)∞k=1 that converges
pointwise a.e.

Try to prove this!!

Let f be a complex-valued function on
� n. The closure of the set {x : f(x) 6= 0} is

called the support for f and we let C∞
0 denote the set of all infinitely continuously

differentiable functions with compact support.

Theorem 1.10. For p ∈ [1,∞) we have

1. Lp
⋂

{ simple functions } and

2. C∞
0

are both dense in Lp.

Finally we give some inequalities that can come in handy in many calculations.

Theorem 1.11 (Young’s inequality). Assume that k :
� n×

� n → � is Lebesgue
measurable and that

max(sup
x

∫

|k(x, y)| dm(y), sup
y

∫

|k(x, y)| dm(x)) = M < ∞.

If f ∈ Lp for some p ∈ [1,∞] then

F (x) =

∫

k(x, y)f(y) dm(y)

belongs to Lp and
‖F‖p ≤ M‖f‖p.

Theorem 1.12 (Chebyshev’s inequality). Let f ∈ Lp, p ∈ [1,∞) and α > 0 be
given. Then we have

m({x : |f(x)| > α}) ≤ (
‖f‖p

α
)p.

In hindsight we note that functions that are Lebesgue integrable can be very wild
but at the same time there are continuous nice functions that are close to the wild
beasts in Lp-norm. Often in applications we want to prove that a certain function,
appearing as a solution to some say integral equation, is continuous but from the
first consideration we just obtain it as an element in Lp. However the continuity
property for the function can then be established from the specific problem. What
the Lp–theory has contributed with is the existence of a function that can be proven
to have some good properties.
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