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1 A Note on Ordinary Differential Equations

1.1 Introduction

Let ¢, ...,c, € C(I) be fixed, where I = [a,b], n > 2 and
cn(x) #0, forall x € 1.

Set
Lu = c,u™ + ..+ cqu, u € C™(I).

The aim of this note is to show that the differential operator L with proper ho-
mogeneous boundary conditions has a so called Green’s function. This means that
solution can be written as an integral with the Green’s function appearing as the
kernel function. Moreover we show that provided the operator L is symmetric the
solution has a spectral decomposition. This follows from the spectral theorem for

compact self-adjoint operators on Hilbert spaces ([1] Theorem 4.10.2).

1.2 Existence of Green’s functions

Our first result is the following fundamental existence theorem for ordinary differ-

ential equations.

Theorem 1.1. Assume ty € I and & = (&1,...,&,) € C". Then for every f € C(I)
there exists a unique u € C™(I) such that Lu = f and (u(ty), v (to), . .., u V(ty)) =

€.

Proof. Set y1 =u, yo =o', ...,y = u" Y. The equation Lu = f is equivalent to

(
Y1 =92
o
yn—l - y’n
LU= 2y = = 2y o f
or, using the vector notation y = (y1,...,Yn),

y=F(ty),tel
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for a vector-valued function F'. This function satisfies a so called Lipschitz condition
[F(ty) —Ft,2)| < Kly—z], tel yzeR",

for some K € R. Moreover note that the condition (u(to), ' (to), ..., u" Y (ty)) = £
can be written y(tg) = . Picard’s existence theorem ([1] theorem 5.2.5) in vector
form yields the result. [

We introduce the notation
N (L) ={u e C"(I); Lu = 0}.
Clearly NV (L) is a subspace of C™(I) since L is a linear operator.

Corollary 1.1. dim N (L) = n.

Proof. Let ty € I be fixed and define
Tu = (u(ty), ..., u™ (L)), ue N(L).

The linear mapping T : N(L) — C" is a bijection from the previous theorem with

the range C". Hence we get dim N (L) = dim C" = n. O
For arbitrary functions us, ..., u, € N(L) we define the Wronskian for uy, ..., u,
by
u (t) us (1) Un (t)
uy (t) us(t) Uy (1)
W(t) = 1' 2: : ,tel
O ORI

Theorem 1.2. The following conditions are equivalent:

1. W(t) #0 forallt € I.
2. W(to) # 0 for some ty € I.

3. Ui, ..., Uy, 18 a basis for the vector space N'(L).

Proof. (1) = (2): trivial.

(2) = (3): Take an u € N(L). Since dim N (L) = n it is enough to show that w is
a linear combination of uq, ..., u,.

Assume that ¢ty € I is fixed and that W (ty) # 0. Let u € N(L). From courses in
linear algebra we know that there exist aq, ..., a, € C" such that

> anlunlto), - u "V (to)) = (ulto), .., uV(to)).
k=1



The function v = >} ayug, € N(L) satisfies the relation

(v(to), ..., v V(L)) = (ulty), ..., u™ V(t))
and by Theorem 1.1 we have v = u. Hence it follows that u € span {uy, ..., u,}.

(3) = (1): Let t € I be arbitrary. We will show that W (¢) # 0. It is enough to
show that the columns in the determinant W (¢) are linearly independent.

Assume that aq,...,qa, € C" and that

> an(un(t), ... ul V(1) = 0.

The function v = > 7 agur € N(L) satisfies v(t) = ... = vV (t) = 0 and is
equal to the zero function by Theorem 1.1. However from > 7 ajur, = 0 it follows
that a3 = ... = «a, = 0. Hence the columns in the determinant W (t) are linearly
independent. O

From now on we use the following notation:
aij,ﬁzj,i:O,...,n—l,j:1,...,n

are complex numbers and

—_

Riu=Y [aju?(a)+ Biu?®)],j=1,...,n

%

Il
S

are boundary operators. Moreover we set

Ru = (Ryu, ..., Ryu)

Cpl)={ueC"(I): Ru=0}

and
Lou = Lu, v € Ci(I).

Theorem 1.3. The following conditions are equivalent:

1. The mapping Lo : C}(I) — C(I) is a bijection.

2. det{Rjurti<jr<n # 0 for every (alternatively for some) basis uq,...,u, 1

N(L).

Proof. (1) = (2): If the determinant in (2) is zero then there are ay,...,a, € C
not all equal to zero such that

> apRju=0,j=1,...,n.
k=1



The function v = Y 7 ayuy satisfies Lv = 0 together with Rv = 0. This yields a
contradiction since v # 0 and Lov = 0.

(2) = (1): Take an arbitrary f € C(I). It remains to prove that the equation
Lu=f
Ru=0

is uniquely solvable. Set w = u — v, where v € C™(I) satisfies Lv = f (Theorem
1.1), we obtain the equivalent equation

Lw=0

Rw = —Rv.
With the ansatz w = Y| aguy, the determinant condition in (2) gives the existence
of a unique solution. O
Now let u1, ..., u, be a basis for the vector space N (L) and set

= ar(t)ux(z)

where ay(t),...,a,(t) are chosen such that

{ (’“)(t t):0 k:O,l,...,n—Q
tt) =

Note that the functions ay(t),...,a,(t) are continuous in ¢ due to Cramer’s rule.
Also observe that for fixed ¢ € I the function u(x) = e(x,t) is the unique solution
to the equation

Lu=0
{ ut) = ... =u2D(t) =0, uD(t) = 1/c,(t).

The function e(x,t),(z,t) € I x I, is called the fundamental solution to the
operator L. This function is of interest in connection with boundary value problems
that we will discuss next.

Theorem 1.4. Let uy,...,u, be a basis for N(L) such that

det{RjUk}1§j,k§n 7é 0

and set G = Ly*. Then there exists a unique continuous function g(z,t), (z,t) €
I x I, such that

(Gf)() = / oo O F(t)dt.

I
This is called the Green’s function g and can be constructed as follows:

1. Set é(x,t) = 0(x — t)e(x,t), where O is the Heaviside’s function
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2. Determine by, ..., b, € C(I) such that the function
gz t) = é(z,t) + > be(t)ur ()
k=1

satisfies
R(g(-,t)) =0,a <t <b.

Proof. First set
ie.

Repeated differentiations yield

i@ - [ " (e, ) f ()t + ele, ) £(2)

=0

W) = [ el 0+ o) fo

)~ [ "l (1) f(8)dt + e (2, ) ()

and
1

&(”)(:p) = /1 e(")(x,t)f(t)dt + . ($)f(x)

From this we conclude Lu = f. The function

u(z) = / g ) f(t)dt

I

satisfies the equation Lu = f since

and the proof is completed.



The function g in Theorem 1.4 is called the Green’s function for the boundary

value problem
Lu=f
Ru = 0.

Problem 1: Determine the Green’s function for the boundary value problem

{ —(A+2)(2)) = f(z), 0 <z <1
w'(0) =0, u(1) = 0.

Solution: The functions uy(x) = 1 and us(z) = In(1 + x) form a basis for the
solutions to the homogeneous equation —((1 + z)u/(z))" = 0. Note that

up(0) up(0) | _ [0 1 | _
“ 11 In2 =-1#0.

so there exists a Green’s function. The fundamental solution e(z,t) = a1 (t)ui(x) +
as(t)ug(x) is given by
e(z,t) = ay(t) + az(t) In(1 + z)

and the constraints e(t,t) = 0, e/ (t,t) = —ﬁt easily yield
e(x,t) =In(1+1¢t) —In(1 + ).
The Green’s function takes the form
g(z,t) =0(x —t)(In(1 +¢) — In(1 + x)) + b1(t) + bo(t) In(1 + )
where

9,(0,t) =0
{ g(l7t) =0,

for 0 <t < 1. Hence we get

by(t) = 0
{ In(1+4+1¢) —In2+b1(¢) +b2(t) In2=0

from which we obtain

bi(t) =In ——, bo(t) = 0.
1(t) =T ba(t)
This finally gives
1+1 2
t)y=0(x—1)1 1 .
9la.1) = bl )n1+x+n1+t

Problem 2: Assume that A € C and f € C([0,1]). Show that the equation

{ u'(z) +u(x) + Mu(x)| = f(z), 0<z <1
u(0) = u(1) =0, u € C*([0,1])

has a unique solution for |A\| < e(e — 1).



Solution: We first determine the Green’s function for the equation
u'+u =Fx),0<z<1
u(0) = u(1) = 0.
The functions u;(z) = 1 and ug(z) = e * form a basis for the solutions to the

homogeneous equation u” 4+« = 0. With our standard notation we get

e(z,t)=1—¢""

and . .
et—e e—e
) =0(x—t)(1—e" -,
Note that
el —e .
t>x=gxt)= 1(1—6 ) <0
6_
and
et —1 1—x
t<x=g(z,t)= 1(1—6 ) <0
6_

which implies g < 0.
For every u € C([0,1]) define

(@) = [ a0 = Au)hat 0 < 2 <1
and observe that T maps C([0,1]) into {u € C?*([0,1]); u(0) = w(1) = 0}. The

equation in problem 2 has therefore a unique solution iff 7" has a unique fixed point.
For u,v € C([0,1]) it holds that

|(Tu)(z) = (T)(x)| = I/0 g(z, )(Ao(t)| = Alu(t)|)dt| <

< IAI/0 (=g(z, ))[[o(@)] = lu@®)]|dt < [A7(2)]lv = vl

where || ||o denotes the max-norm for C'([0, 1]) and

ﬂ@z—Ag@ﬁﬁ

Since j(0) = j(1) = 0 and j” + j' = —1 it follows that

) e e _,
j(x)_e—l_x_e—l
and
1 1
maxj—j(ln ‘ )— —i—ln(l——) <
[0,1] e—1 e—1 e
1 1 1

We conclude that

A
1T = Tofloe < 2 i — o]

e(e —1)

and Banach’s fixed point theorem ([2]) implies that 7" has a unique fixed point for
|A] < e(e—1).



1.3 Spectral theory for ordinary differential equations
The linear mapping Ly : CE(I) — C([) is called symmetric if
(Lou,v) = (u, Lov), all u,v e CL(I),
where the inner product is given by the inner product in L?(I)
b S
()= | e,

Provided that Ly is a bijection and g is the Green’s function for the boundary value

problem
Lu=f
Ru=0"
we define
b
@) = [ gle.nf 0. f i)
and

b
(Gf) () = / o(e. 0 F(t) dt, f € LA(D).

Theorem 1.5. Assume that Ly is a bijection. Then the following conditions are
equivalent:

1. Lg 1s symmetric

2. G is self-adjoint

3. g(w,t) = g(t,x), v, t € I.

Proof. (1) & (2): Lo is symmetric iff
(LoGf,Gh) = (Gf,LoGh), f,h € C(I)
which is the same as
(f,Gh) = (Gf.h), f,h € C(I).

This is equivalent to

(f,Gh) = (G[.h), f,h € L*(I)

since C(I) is dense in L?(I) and G is a bounded linear operator on L(I) ([1] example
4.2.4) whose restriction to C(I) is equal to Gi. Ly being symmetric is thus equivalent
to G being self-adjoint.

(2) < (3): We first observe that

(G 1)) = / ot o) (1)t
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([1] example 4.4.3). This implies that G = G* iff

/Xmmw—gwx»ﬂmﬁzafeL%m.

Since g is continuous this means that g(x,t) — g(t,z) = 0 for all x,¢t € I and so
g(x,t) = g(t,z) for all x,t € I. O

Example 1: Consider the boundary value problem

' = f(z)
{ u(0) =u(1)=0,0

IN

r < 1.

This means that Lu = —u”, Rju = u(0) and Rou = wu(l). The operator Ly is
symmetric since

1 1
(Lou,v) = / —u"vdr = [ - u'@}é +/ u'v'de = {Ru=0} =
0 0

= (u',v") = (v, u') = (Lov,u) = (u, Lov)

for all u,v € C%([0,1]). This fact also follows from Theorem 1.5 by checking that
Ly is a bijection and that the Green’s function is given by

(2,1) = tl—z), 0<t<z<1
REUV=, 1=t)z, 0<2<t<l.

It easily follows that g(z,t) = g(t,x). The details are left as an exercise.

Theorem 1.6. Assume that Lo is symmetric and is a bijection. Then the following
statements are true:

1. 0 is not an eigenvalue for Ly nor for G.

2. [ is an eigenfunction for Lo corresponding to the eigenvalue p iff f is an
eigenvalue for G corresponding to the eigenvalue 1/p.

Proof. (1): N(Lgy) = {0} implies that Ly has no eigenfunction corresponding to an
eigenvalue zero.

Now assume that f € N(G). We will show that f = 0. For this take an arbitrary
¢ € Ci(I). We obtain

0=(0, Lo¢) = (Gf, Lop) = (f, GLop) =

Since CR(I) is dense in L?(I) we can conclude that f = 0.
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(2): =) From )
07 f=G(Lf)=G(uf) = nGf = pGf

it follows that f is an eigenfunction to G corresponding to the eigenvalue 1 /.

<) We have
b
/ g, t)f(t)dt = %f(x) a.e. in I.
Setting
b
h(z) = M/ glx, ) f(t)dt, z e T

it follows from Lebesgue’s dominated convergence theorem (see [3]) that h € C(I).
Moreover we have h(z) = f(x) a.e. in I and

hz) = / g(z, Oh(t)dt, z € 1,

and hence we get Gh = ih. This yields

h = Lo(Gh) = Ly (1h) Lo
1 Il
Since h # 0 in CR(I), h is an eigenfunction to L, corresponding to the eigenvalue
w. Thus h, which is equal to f in L*(I), is an eigenfunction to Ly corresponding to
the eigenvalue p. This is the proper interpretation of the formulation in Theorem
1.6 2) and the proof of the theorem is complete. O

Theorem 1.7. Assume that Lo is symmetric and is a bijection. Moreover let (ji,,)5°

denote the eigenvalues for Lo counted with multiplicity and assume that (e,,)° is a

corresponding sequence of orthonormal eigenfunctions. Then (e,)7° is an ON-basis

for L*(I) and the solution to the equation

u= Z i(f, en)en  (in L2(1)).

Proof. The operator G is compact ([1] example 4.8.4) and the Hilbert-Schmidt the-
orem ([1] theorem 4.10.1) and Theorem 1.6 1) implies that (e,)$° is a complete
ON-sequence for L*(I). From

[ = Z(f’ €n)en

in L?(I), Theorem 1.6 2) now implies that

oo

w=Gf=Gf =S (f en)Gen = Zui
1 1
in L2(I). O

(f,en)en
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Example 2: Consider the boundary value problem

(=t
u(0) =u(1)=0,0

IN

xr < 1.

Example 1 shows that the corresponding operator L is symmetric and is a bijection.
The eigenfunctions for L, are obtained as the non-trivial solutions to the equation

{ —e(z) = /;e z)

and a simple calculation gives e,(x) = Asinnmz, where A # 0 and n = 1,2,....
The sequence (v/2sin nrz)$° is therefore an ON-basis for L([0, 1]).

Example 3: Wirtinger’s inequality states that

1 1
/0 ]u’(x)]zda:ZWz/O u(z)2dz

for all u € C*(]0,1]) that satisfies u(0) = u(1) = 0. To show this we first let
u(x) = Zan\/isinmm (in L?([0,1]))
1

where

1
an:/ u(x)V/2sin nrrda.
0

Furthermore we have

0

1 1
/ u'(2)V/2 cos nmads = [u(w)\/ﬁ cosnmwr| +
0

1
+ mr/ w(x)V2sinnrrdr = nra,
0

and using the fact that the sequence (v/2cosnmz)$® is an ON sequence, Bessel’s
inequality ([1] theorem 3.7.2) yields the estimate

1 o0
/ (@) Pdr > S nPaa,
0 1
where the RHS is greater than or equal to
00 1
w3 Janf =7 [ Ju(o)Pd
T 0

This gives one proof for Wirtinger’s inequality.
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