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1 A Note on Ordinary Differential Equations

1.1 Introduction

Let c0, . . . , cn ∈ C(I) be fixed, where I = [a, b], n ≥ 2 and

cn(x) 6= 0, for all x ∈ I.

Set

Lu = cnu
(n) + . . . + c0u, u ∈ Cn(I).

The aim of this note is to show that the differential operator L with proper ho-
mogeneous boundary conditions has a so called Green’s function. This means that
solution can be written as an integral with the Green’s function appearing as the
kernel function. Moreover we show that provided the operator L is symmetric the
solution has a spectral decomposition. This follows from the spectral theorem for
compact self-adjoint operators on Hilbert spaces ([1] Theorem 4.10.2).

1.2 Existence of Green’s functions

Our first result is the following fundamental existence theorem for ordinary differ-
ential equations.

Theorem 1.1. Assume t0 ∈ I and ξ = (ξ1, . . . , ξn) ∈ �
n. Then for every f ∈ C(I)

there exists a unique u ∈ Cn(I) such that Lu = f and (u(t0), u
′(t0), . . . , u

(n−1)(t0)) =
ξ.

Proof. Set y1 = u, y2 = u′, . . . , yn = u(n−1). The equation Lu = f is equivalent to







y′
1 = y2

...
y′

n−1 = yn

y′
n = − c0

cn

y1 − . . . − cn−1

cn

yn + 1
cn

f

or, using the vector notation y = (y1, . . . , yn),

y′ = F (t, y), t ∈ I
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for a vector-valued function F . This function satisfies a so called Lipschitz condition

|F (t, y) − F (t, z)| ≤ K|y − z|, t ∈ I, y, z ∈ � n,

for some K ∈ � . Moreover note that the condition (u(t0), u
′(t0), . . . , u

(n−1)(t0)) = ξ
can be written y(t0) = ξ. Picard’s existence theorem ([1] theorem 5.2.5) in vector
form yields the result.

We introduce the notation

N (L) = {u ∈ Cn(I); Lu = 0}.

Clearly N (L) is a subspace of Cn(I) since L is a linear operator.

Corollary 1.1. dimN (L) = n.

Proof. Let t0 ∈ I be fixed and define

Tu = (u(t0), . . . , u
(n−1)(t0)), u ∈ N (L).

The linear mapping T : N (L) → �
n is a bijection from the previous theorem with

the range
�

n. Hence we get dimN (L) = dim
�

n = n.

For arbitrary functions u1, . . . , un ∈ N (L) we define the Wronskian for u1, . . . , un

by

W (t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

u1(t) u2(t) . . . un(t)
u′

1(t) u′
2(t) u′

n(t)
...

...
...

u
(n−1)
1 (t) u

(n−1)
2 (t) u

(n−1)
n (t)

∣
∣
∣
∣
∣
∣
∣
∣
∣

, t ∈ I.

Theorem 1.2. The following conditions are equivalent:

1. W (t) 6= 0 for all t ∈ I.

2. W (t0) 6= 0 for some t0 ∈ I.

3. u1, . . . , un is a basis for the vector space N (L).

Proof. (1) ⇒ (2): trivial.

(2) ⇒ (3): Take an u ∈ N (L). Since dimN (L) = n it is enough to show that u is
a linear combination of u1, . . . , un.

Assume that t0 ∈ I is fixed and that W (t0) 6= 0. Let u ∈ N (L). From courses in
linear algebra we know that there exist α1, . . . , αn ∈ �

n such that

n∑

k=1

αk(uk(t0), . . . , u
(n−1)
k (t0)) = (u(t0), . . . , u

(n−1)(t0)).
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The function v =
∑n

1 αkuk ∈ N (L) satisfies the relation

(v(t0), . . . , v
(n−1)(t0)) = (u(t0), . . . , u

(n−1)(t0))

and by Theorem 1.1 we have v = u. Hence it follows that u ∈ span {u1, . . . , un}.
(3) ⇒ (1): Let t ∈ I be arbitrary. We will show that W (t) 6= 0. It is enough to
show that the columns in the determinant W (t) are linearly independent.

Assume that α1, . . . , αn ∈ �
n and that

n∑

k=1

αk(uk(t), . . . , u
(n−1)
k (t)) = 0.

The function v =
∑n

1 αkuk ∈ N (L) satisfies v(t) = . . . = v(n−1)(t) = 0 and is
equal to the zero function by Theorem 1.1. However from

∑n

1 αkuk = 0 it follows
that α1 = . . . = αn = 0. Hence the columns in the determinant W (t) are linearly
independent.

From now on we use the following notation:

αij, βij, i = 0, . . . , n − 1, j = 1, . . . , n

are complex numbers and

Rju =
n−1∑

i=0

[αiju
(i)(a) + βiju

(i)(b)], j = 1, . . . , n.

are boundary operators. Moreover we set

Ru = (R1u, . . . , Rnu)

Cn
R(I) = {u ∈ Cn(I) : Ru = 0}

and
L0u = Lu, u ∈ Cn

R(I).

Theorem 1.3. The following conditions are equivalent:

1. The mapping L0 : Cn
R(I) → C(I) is a bijection.

2. det{Rjuk}1≤j,k≤n 6= 0 for every (alternatively for some) basis u1, . . . , un i
N (L).

Proof. (1) ⇒ (2): If the determinant in (2) is zero then there are α1, . . . , αn ∈ �

not all equal to zero such that

n∑

k=1

αkRjuk = 0, j = 1, . . . , n.
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The function v =
∑n

1 αkuk satisfies Lv = 0 together with Rv = 0. This yields a
contradiction since v 6= 0 and L0v = 0.

(2) ⇒ (1): Take an arbitrary f ∈ C(I). It remains to prove that the equation

{
Lu = f
Ru = 0

is uniquely solvable. Set w = u − v, where v ∈ Cn(I) satisfies Lv = f (Theorem
1.1), we obtain the equivalent equation

{
Lw = 0
Rw = −Rv.

With the ansatz w =
∑n

1 αkuk the determinant condition in (2) gives the existence
of a unique solution.

Now let u1, . . . , un be a basis for the vector space N (L) and set

e(x, t) =
n∑

k=1

ak(t)uk(x)

where a1(t), . . . , an(t) are chosen such that

{

e
(k)
x (t, t) = 0, k = 0, 1, . . . , n − 2

e
(n−1)
x (t, t) = 1/cn(t).

Note that the functions a1(t), . . . , an(t) are continuous in t due to Cramer’s rule.
Also observe that for fixed t ∈ I the function u(x) = e(x, t) is the unique solution
to the equation

{
Lu = 0
u(t) = . . . = u(n−2)(t) = 0, u(n−1)(t) = 1/cn(t).

The function e(x, t), (x, t) ∈ I × I, is called the fundamental solution to the
operator L. This function is of interest in connection with boundary value problems
that we will discuss next.

Theorem 1.4. Let u1, . . . , un be a basis for N (L) such that

det{Rjuk}1≤j,k≤n 6= 0

and set G = L−1
0 . Then there exists a unique continuous function g(x, t), (x, t) ∈

I × I, such that

(Gf)(x) =

∫

I

g(x, t)f(t)dt.

This is called the Green’s function g and can be constructed as follows:

1. Set ẽ(x, t) = θ(x − t)e(x, t), where θ is the Heaviside’s function
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2. Determine b1, . . . , bn ∈ C(I) such that the function

g(x, t) = ẽ(x, t) +
n∑

k=1

bk(t)uk(x)

satisfies

R(g(·, t)) = 0, a < t < b.

Proof. First set

ũ(x) =

∫

I

ẽ(x, t)f(t)dt,

i.e.

ũ(x) =

∫ x

a

e(x, t)f(t)dt.

Repeated differentiations yield

ũ′(x) =

∫ x

a

e′x(x, t)f(t)dt + e(x, x)
︸ ︷︷ ︸

=0

f(x)

ũ′′(x) =

∫ x

a

e′′x(x, t)f(t)dt + e′x(x, x)
︸ ︷︷ ︸

=0

f(x)

...

ũ(n−1)(x) =

∫ x

a

e(n−1)
x (x, t)f(t)dt + e(n−2)(x, x)

︸ ︷︷ ︸

=0

f(x)

and

ũ(n)(x) =

∫ x

a

e(n)(x, t)f(t)dt +
1

cn(x)
f(x).

From this we conclude Lũ = f . The function

u(x) =

∫

I

g(x, t)f(t)dt

satisfies the equation Lu = f since

u(x) = ũ(x) +
n∑

k=1

uk(x)

∫

I

bk(t)f(t)dt.

Finally we observe that

Ru =

∫ b−

a+

R(g(·, t))
︸ ︷︷ ︸

=0

f(t)dt

and the proof is completed.
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The function g in Theorem 1.4 is called the Green’s function for the boundary

value problem
{

Lu = f
Ru = 0.

Problem 1: Determine the Green’s function for the boundary value problem

{
−((1 + x)u′(x))′ = f(x), 0 ≤ x ≤ 1
u′(0) = 0, u(1) = 0.

Solution: The functions u1(x) = 1 and u2(x) = ln(1 + x) form a basis for the
solutions to the homogeneous equation −((1 + x)u′(x))′ = 0. Note that

∣
∣
∣
∣

u′
1(0) u′

2(0)
u1(1) u2(1)

∣
∣
∣
∣
=

∣
∣
∣
∣

0 1
1 ln 2

∣
∣
∣
∣
= −1 6= 0.

so there exists a Green’s function. The fundamental solution e(x, t) = a1(t)u1(x) +
a2(t)u2(x) is given by

e(x, t) = a1(t) + a2(t) ln(1 + x)

and the constraints e(t, t) = 0, e′x(t, t) = − 1
1+t

easily yield

e(x, t) = ln(1 + t) − ln(1 + x).

The Green’s function takes the form

g(x, t) = θ(x − t)(ln(1 + t) − ln(1 + x)) + b1(t) + b2(t) ln(1 + x)

where {
g′

x(0, t) = 0
g(1, t) = 0,

for 0 < t < 1. Hence we get

{
b2(t) = 0
ln(1 + t) − ln 2 + b1(t) + b2(t) ln 2 = 0

from which we obtain

b1(t) = ln
2

1 + t
, b2(t) = 0.

This finally gives

g(x, t) = θ(x − t) ln
1 + t

1 + x
+ ln

2

1 + t
.

Problem 2: Assume that λ ∈ �
and f ∈ C([0, 1]). Show that the equation

{
u′′(x) + u′(x) + λ|u(x)| = f(x), 0 ≤ x ≤ 1
u(0) = u(1) = 0, u ∈ C2([0, 1])

has a unique solution for |λ| < e(e − 1).

6



Solution: We first determine the Green’s function for the equation
{

u′′ + u′ = F (x), 0 ≤ x ≤ 1
u(0) = u(1) = 0.

The functions u1(x) = 1 and u2(x) = e−x form a basis for the solutions to the
homogeneous equation u′′ + u′ = 0. With our standard notation we get

e(x, t) = 1 − et−x

and

g(x, t) = θ(x − t)(1 − et−x) +
et − e

e − 1
+

e − et

e − 1
e−x.

Note that

t > x ⇒ g(x, t) =
et − e

e − 1
(1 − e−x) ≤ 0

and

t ≤ x ⇒ g(x, t) =
et − 1

e − 1
(1 − e1−x) ≤ 0

which implies g ≤ 0.

For every u ∈ C([0, 1]) define

(Tu)(x) =

∫ 1

0

g(x, t)(f(t) − λ|u(t)|)dt, 0 ≤ x ≤ 1

and observe that T maps C([0, 1]) into {u ∈ C2([0, 1]); u(0) = u(1) = 0}. The
equation in problem 2 has therefore a unique solution iff T has a unique fixed point.
For u, v ∈ C([0, 1]) it holds that

|(Tu)(x) − (Tv)(x)| = |
∫ 1

0

g(x, t)(λ|v(t)| − λ|u(t)|)dt| ≤

≤ |λ|
∫ 1

0

(−g(x, t))||v(t)| − |u(t)||dt ≤ |λ|j(x)‖u − v‖∞,

where ‖ ‖∞ denotes the max-norm for C([0, 1]) and

j(x) = −
∫ 1

0

g(x, t)dt.

Since j(0) = j(1) = 0 and j ′′ + j′ = −1 it follows that

j(x) =
e

e − 1
− x − e

e − 1
e−x

and

max
[0,1]

j = j

(

ln
e

e − 1

)

=
1

e − 1
+ ln

(

1 − 1

e

)

≤

≤ 1

e − 1
− 1

e
=

1

e(e − 1)
.

We conclude that

‖Tu − Tv‖∞ ≤ |λ|
e(e − 1)

‖u − v‖∞
and Banach’s fixed point theorem ([2]) implies that T has a unique fixed point for
|λ| < e(e − 1).
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1.3 Spectral theory for ordinary differential equations

The linear mapping L0 : Cn
R(I) → C(I) is called symmetric if

(L0u, v) = (u, L0v), all u, v ∈ Cn
R(I),

where the inner product is given by the inner product in L2(I)

(f, h) =

∫ b

a

f(x)h(x)dx.

Provided that L0 is a bijection and g is the Green’s function for the boundary value
problem

{
Lu = f
Ru = 0

,

we define

(Gf)(x) =

∫ b

a

g(x, t)f(t)dt, f ∈ C(I)

and

(G̃f)(x) =

∫ b

a

g(x, t)f(t) dt, f ∈ L2(I).

Theorem 1.5. Assume that L0 is a bijection. Then the following conditions are
equivalent:

1. L0 is symmetric

2. G̃ is self-adjoint

3. g(x, t) = g(t, x), x, t ∈ I.

Proof. (1) ⇔ (2): L0 is symmetric iff

(L0Gf,Gh) = (Gf,L0Gh), f, h ∈ C(I)

which is the same as
(f,Gh) = (Gf, h), f, h ∈ C(I).

This is equivalent to
(f, G̃h) = (G̃f, h), f, h ∈ L2(I)

since C(I) is dense in L2(I) and G̃ is a bounded linear operator on L2(I) ([1] example
4.2.4) whose restriction to C(I) is equal to G. L0 being symmetric is thus equivalent
to G̃ being self-adjoint.

(2) ⇔ (3): We first observe that

(G̃∗f)(x) =

∫ b

a

g(t, x)f(t)dt
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([1] example 4.4.3). This implies that G̃ = G̃∗ iff

∫ b

a

(g(x, t) − g(t, x))f(t)dt = 0, f ∈ L2(I).

Since g is continuous this means that g(x, t) − g(t, x) = 0 for all x, t ∈ I and so
g(x, t) = g(t, x) for all x, t ∈ I.

Example 1: Consider the boundary value problem

{
−u′′ = f(x)
u(0) = u(1) = 0, 0 ≤ x ≤ 1.

This means that Lu = −u′′, R1u = u(0) and R2u = u(1). The operator L0 is
symmetric since

(L0u, v) =

∫ 1

0

−u′′v̄dx =
[
− u′v̄

]1

0
+

∫ 1

0

u′v̄′dx = {Ru = 0} =

= (u′, v′) = (v′, u′) = (L0v, u) = (u, L0v)

for all u, v ∈ C2
R([0, 1]). This fact also follows from Theorem 1.5 by checking that

L0 is a bijection and that the Green’s function is given by

g(x, t) =

{
t(1 − x), 0 ≤ t < x ≤ 1
(1 − t)x, 0 ≤ x ≤ t ≤ 1.

It easily follows that g(x, t) = g(t, x). The details are left as an exercise.

Theorem 1.6. Assume that L0 is symmetric and is a bijection. Then the following
statements are true:

1. 0 is not an eigenvalue for L0 nor for G̃.

2. f is an eigenfunction for L0 corresponding to the eigenvalue µ iff f is an
eigenvalue for G̃ corresponding to the eigenvalue 1/µ.

Proof. (1): N (L0) = {0} implies that L0 has no eigenfunction corresponding to an
eigenvalue zero.

Now assume that f ∈ N (G̃). We will show that f = 0. For this take an arbitrary
φ ∈ Cn

R(I). We obtain

0 =(0, L0φ) = (G̃f, L0φ) = (f, G̃L0φ) =

=(f,GL0φ) = (f, φ).

Since Cn
R(I) is dense in L2(I) we can conclude that f = 0.
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(2): ⇒) From
0 6= f = G(L0f) = G(µf) = µGf = µG̃f

it follows that f is an eigenfunction to G̃ corresponding to the eigenvalue 1/µ.

⇐) We have
∫ b

a

g(x, t)f(t)dt =
1

µ
f(x) a.e. in I.

Setting

h(x) = µ

∫ b

a

g(x, t)f(t)dt, x ∈ I

it follows from Lebesgue’s dominated convergence theorem (see [3]) that h ∈ C(I).
Moreover we have h(x) = f(x) a.e. in I and

h(x) = µ

∫ b

a

g(x, t)h(t)dt, x ∈ I,

and hence we get Gh = 1
µ
h. This yields

h = L0(Gh) = L0

(
1

µ
h

)

=
1

µ
L0h.

Since h 6= 0 in Cn
R(I), h is an eigenfunction to L0 corresponding to the eigenvalue

µ. Thus h, which is equal to f in L2(I), is an eigenfunction to L0 corresponding to
the eigenvalue µ. This is the proper interpretation of the formulation in Theorem
1.6 2) and the proof of the theorem is complete.

Theorem 1.7. Assume that L0 is symmetric and is a bijection. Moreover let (µn)∞1
denote the eigenvalues for L0 counted with multiplicity and assume that (en)∞1 is a
corresponding sequence of orthonormal eigenfunctions. Then (en)∞1 is an ON-basis
for L2(I) and the solution to the equation

{
Lu = f
Ru = 0

,

where f ∈ C(I), is given by

u =
∞∑

1

1

µn

(f, en)en (in L2(I)).

Proof. The operator G̃ is compact ([1] example 4.8.4) and the Hilbert-Schmidt the-
orem ([1] theorem 4.10.1) and Theorem 1.6 1) implies that (en)∞1 is a complete
ON-sequence for L2(I). From

f =
∞∑

1

(f, en)en

in L2(I), Theorem 1.6 2) now implies that

u = Gf = G̃f =
∞∑

1

(f, en)G̃en =
∞∑

1

1

µn

(f, en)en

in L2(I).
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Example 2: Consider the boundary value problem

{
−u′′ = f(x)
u(0) = u(1) = 0, 0 ≤ x ≤ 1.

Example 1 shows that the corresponding operator L0 is symmetric and is a bijection.
The eigenfunctions for L0 are obtained as the non-trivial solutions to the equation

{
−e′′(x) = µe(x)
e(0) = e(1) = 0, 0 ≤ x ≤ 1

and a simple calculation gives en(x) = A sin nπx, where A 6= 0 and n = 1, 2, . . ..
The sequence (

√
2 sin nπx)∞1 is therefore an ON-basis for L2([0, 1]).

Example 3: Wirtinger’s inequality states that

∫ 1

0

|u′(x)|2dx ≥ π2

∫ 1

0

|u(x)|2dx

for all u ∈ C1([0, 1]) that satisfies u(0) = u(1) = 0. To show this we first let

u(x) =
∞∑

1

an

√
2 sin nπx (in L2([0, 1]))

where

an =

∫ 1

0

u(x)
√

2 sin nπxdx.

Furthermore we have

∫ 1

0

u′(x)
√

2 cos nπxdx =
[

u(x)
√

2 cos nπx
]1

0
+

+ nπ

∫ 1

0

u(x)
√

2 sin nπxdx = nπan

and using the fact that the sequence (
√

2 cos nπx)∞1 is an ON sequence, Bessel’s
inequality ([1] theorem 3.7.2) yields the estimate

∫ 1

0

|u′(x)|2dx ≥
∞∑

1

n2π2|an|2

where the RHS is greater than or equal to

π2

∞∑

1

|an|2 = π2

∫ 1

0

|u(x)|2dx.

This gives one proof for Wirtinger’s inequality.
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