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sChalmers & GU1 A Note on Fixed Point Theory1.1 Introdu
tionThis note 
ontains topi
s from nonlinear fun
tional analysis. It means that themappings appearing are not assumed to be linear unless expli
itly stated to be so.Our main problem is to solve equations of the formT (u) = v;where T : X ! Y is a mapping between Bana
h spa
es X and Y . Here v 2 Y isgiven and we look for solutions in X or some subset of X. For linear mappings T we
an often �nd a formula for the inverse operator. The solution has to be uniquelyde�ned in this 
ase. An example of this is boundary value problems� u(n) + an�1u(n�1) + : : :+ a1u0 + a0u = v; in Ihomogeneous boundary values on �IThe solutions are obtained as 
onvolutions of the Green's fun
tion for the problemwith the right hand side v of the di�erential equation.However if T is a nonlinear mapping then in general we 
an not �nd a formularepresenting the solution/solutions. This is also the 
ase when X = Y . We 
an nolonger prove the existen
e of a solution just by expli
itly writing down the inverseoperator, but we have rely on mapping properties of T to prove the existen
e of asolution. It might be the 
ase that there are several solutions.In 
onne
tion with integral equations for instan
e we have X = Y and the mappingT takes the form T (u) = u+G(u);i.e. T is a perturbation of the identity mapping. Then the problem 
an be formulatedas u = H(u);whereH(u) = v�G(u). Here we suppress the variable v and 
onsiderH as a fun
tionof u with v as a parameter. The problem to �nd a solution is then equivalent to�nd a �xed point of H, i.e. an element u0 2 X su
h thatu0 = H(u0):1



We re
all that if G is linear and small in the sense that the operator norm of G isless than 1 then the mapping T�1 is a wellde�ned bounded linear mapping and 
anbe obtained as a Neumann series (see [4℄).The �xed point results that will be dis
ussed are of two types. The �rst type dealswith 
ontra
tions and are referred to as Bana
h's �xed point theorems. The se
ondtype deals with 
ompa
t mappings and is more involved. Names asso
iated withsu
h results are Brouwer and S
hauder.Let us now 
onsider a simple example. Assume thatf : [0; 1℄! [0; 1℄is a 
ontinuous fun
tion. Then there exists a x0 2 [0; 1℄ su
h that f(x0) = x0. This isa 
onsequen
e of the theorem saying that a real-valued 
ontinuous fun
tion attainsevery intermediary value between any two given values and is based on the fa
t that1. [0; 1℄ is a 
onne
ted 
losed (i.e. a 
ompa
t1 and 
onvex) subset in a Bana
hspa
e, here R, and that2. f is a 
ontinuous fun
tion.To prove the existen
e of a �xed point for f just de�ne the fun
tion g(x) = x�f(x)on the interval [0; 1℄ and observe that g is a 
ontinuous fun
tion satisfying g(0) �0 � g(1). We 
an then 
on
lude that there is a x0 2 [0; 1℄ su
h that g(x0) = 0.This example 
an be 
onsidered as the 1-dimensional version of Brouwer �xed pointtheorem. One feature here is that the method is not 
onstru
tive, i.e. the positionof the �xed point is not given by the method. Nor does the method yield that the�xed point is unique, whi
h indeed is sound sin
e there 
an be any number of �xedpoints for f . To get some information on the position of one �xed point we 
anuse the strategy of repeatedly 
utting intervals into pie
es as follows: Assume thatg(0) < 0 < g(1), sin
e otherwise we already have one �xed point, and 
onsider thesubintervals [0; 12 ℄ and [12 ; 1℄. If g(12) = 0 we have one �xed point namely x0 = 12 .If g(12) > 0 or g(12) < 0 we 
an apply the pro
edure to the the restri
tion of thefun
tion g to the subintervals [0; 12 ℄ and [12 ; 1℄ respe
tively. In this way we either�nd a �xed point as an end point of an interval or we �nd an in�nite set of nestedshrinking intervals that all 
ontains a �xed point. For the later 
ase we 
an for any� > 0 �nd an interval of length less than � that 
ontains a �xed point. We also notethat this argument proves the intermediary value theorem provided we have that Ris a 
omplete normed spa
e, i.e. a Bana
h spa
e. Also 
ompare the argument abovewith the proof of Baire's theorem.1.2 Bana
h's �xed point theoremFirst we look at the problem to �nd a �xed point for a real-valued 
ontinuousfun
tion f : R! R in the spirit of Bana
h's �xed point theorem. We then need f1
f. g : (0; 1)! (0; 1) with g(x) = x2 . 2



to be a 
ontra
tion meaning that there is a positive real number 
 less than 1 su
hthat for any pair x; y of points the distan
e between the images under f of thesepoints are 
loser by a fa
tor 
 than the distan
e between the points x and y. Informulas this means jf(x)� f(y)j � 
jx� yjfor arbitrary x; y 2 R. The 
on
lusion from Bana
h �xed point theorem is thatthere is a unique �xed point for f . This 
an be found by just �xing any elementz 2 R and then forming the sequen
e2 (T n(z))1n=1. This is a 
onverging sequen
ewith the �xed point as the limit point. On the other hand there is no restri
tion onthe domain of f being a 
onvex 
ompa
t set.We �rst state and prove some general observations.Theorem 1.1. Let T be a 
ontinuous mapping on a Bana
h spa
e X. Then thefollowing statements hold true:1. If there exist x; y 2 X su
h thatlimn!1T n(x) = ythen y is a �xed point for T , i.e. T (y) = y.2. If T (X) is a 
ompa
t set in X and for ea
h � > 0 there exists a x� 2 X su
hthat kT (x�)� x�k < �then T has a �xed point.Proof. Set yn = T n(x), n = 1; 2; : : :. If T is a 
ontinuous mapping thenT (y) = T ( limn!1 yn) = limn!1T (yn) = limn!1 yn+1 = y;whi
h proves the �rst statement.Assume that the assumptions of 2) are satis�ed. Then for n = 1; 2; : : : there arexn 2 X su
h that kT (xn)� xnk < 1n: (1)T (X) is a 
ompa
t set implies that there exits a 
onvergent subsequen
e (T (xnk))1k=1of (T (xn))1n=1. Call the limit point x. Then x is a �xed point for T sin
e also thesequen
e (xnk)1k=1 
onverges to x a

ording to (1) and T is 
ontinuous.We now formulate one of the main theorems.Theorem 1.2 (Bana
h's �xed point theorem). Let T be a 
ontra
tion on aBana
h spa
e X. Then T has a unique �xed point.2Tn denotes the operator obtained by 
omposing T with itself n times, i.e. Tn = T Æ T Æ : : : Æ T| {z }n elements .3



Proof. Fix an arbitrary element z 2 X and 
onsider the sequen
e(T n(z))1n=1:Set zn = T n(z) for n = 1; 2; : : :. We note thatkzn � zmk � kzn � zn�1k+ : : :+ kzm+1 � zmk == kT (zn�1)� T (zn�2)k+ : : :+ kT (zm)� T (zm�1)k �� 
kzn�1 � zn�2k+ : : :+ 
kzm � zm�1k � : : : �� (
n�1 + 
n�2 + : : : 
m�1)kz1 � zk � 
m�11� 
kz1 � zk;where we (without loss of generality) have assumed n > m � 1. This yieldskzn � zmk ! 0 as n;m!1 and hen
e (zn)1n=1 is a Cau
hy sequen
e. Sin
e X is aBana
h spa
e the sequen
e 
onverges, i.e. there is a x0 2 X su
h that zn ! x0 asn!1. Here x0 is a �xed point for T sin
ekT (x0)� x0k � kT (x0)� T (zn)k+ kzn+1 � x0k � 
kx0 � znk+ kzn+1 � x0kwhere the LHS is independent of n and the RHS tends to 0 as n ! 1. Theuniqueness follows from the 
ontra
tion property for T . If x0 6= y0 both are �xedpoints of T then we getkx0 � y0k = kT (x0)� T (y0)k � 
kx0 � y0k < kx0 � y0kwhi
h yields a 
ontradi
tion.From the proof we see that1. the sequen
e (T n(z))1n=1 
onverges to the unique �xed point independentlyof the 
hoi
e of z.2. for an arbitrary element x 2 X we havekx� x0k � 11� 
kx� T (x)k;where x0 denotes the �xed point of T , sin
ekx� x0k � kx� T (x)k+ kT (x)� T (x0)k � kx� T (x)k+ 
kx� x0k:Bana
h's �xed point theorem 
an be generalized in the following way.Theorem 1.3. Let T be a mapping on a Bana
h spa
e X su
h that TN is a 
on-tra
tion on X for some positive integer N . Then T has a unique �xed point.4



It is not ne
essary to assume that T is 
ontinuous.Proof. Bana
h's �xed point theorem implies that there exists a unique �xed pointfor TN . Call this element x0. Now just note thatkT (x0)� x0k = kTN(T (x0))� TN(x0)k � 
kT (x0)� x0kimplies that T (x0) = x0 sin
e 0 < 
 < 1. The uniqueness is 
lear sin
e a �xed pointfor T is also a �xed point for TN .We end this se
tion by two examples.Example: Let K(x; y) be a 
ontinuous real-valued fun
tion for 0 � x; y � 1 and letv(x) be a 
ontinuous real fun
tion for 0 � x � 1. Then there is a unique 
ontinuousreal fun
tion z(x) su
h thatz(x) = v(x) + Z x0 K(x; y)z(y) dy; 0 � x � 1:To prove this we 
onsider the Bana
h spa
e C([0; 1℄) with the sup-norm and de�nethe integral operator L : C([0; 1℄)! C([0; 1℄) byLz(x) = Z x0 K(x; y)z(y) dy:Clearly Ln will be an integral operator on C([0; 1℄) given by the kernel funktionKn(x; y). To �nd this fun
tion set K1(x; y) = K(x; y) and assume that Kn(x; y) isknown. Then we obtain(Ln+1z)(x) = Z x0 K(x; t)(Lnz)(t) dt = Z x0 K(x; t) Z t0 Kn(t; y)z(y) dy dt == Z x0 (Z xy K(x; t)Kn(t; y) dt)z(y) dy = Z x0 Kn+1(x; y)z(y) dy:Hen
e Kn+1(x; y) = Z xy K(x; t)Kn(t; y) dt; 0 � y � x � 1:The fun
tion K(x; y) is 
ontinuous on the 
losed unit square and so it is bounded,say jK(x; y)j �Mfor all 0 � y � x � 1. Then again by indu
tion we see thatjKn(x; y)j � Mnjx� yjn�1(n� 1)!for all 0 � y � x � 1. Indeed if this holds for n then for 0 � y � x � 1jKn+1(x; y)j � Z xy MMnjt� yjn�1(n� 1)! dt � Mn+1jx� yjnn! :5



Hen
e if n is suÆ
iently large thenjKn(x; y)j � 12for 0 � y � x � 1 and soj(Lnz)(x)j � Z x0 jKn(x; y)j jz(y)j dy � 12kzk;i.e. kLnk � 12 :We now de�ne T : C([0; 1℄)! C([0; 1℄) by Tz = v + Lz. HereT nz = (�n�1k=0Lk)v + Lnz;whi
h yields that T n is a 
ontra
tion on C([0; 1℄). By Theorem 1.3 the mapping Thas a unique �xed point.Example: Let K(x; y) and f(y; z) be 
ontinuous real-valued fun
tions for 0 �x; y � 1 and z 2 R. Moreover let v(x) be a 
ontinuous real fun
tion for 0 � x � 1.Assume that jf(y; z1)� f(y; z2)j � N jz1 � z2jfor all 0 � y � 1 and z1; z2 2 R. Our 
laim is that there exists a unique 
ontinuousfun
tion z(x) on 0 � x � 1 su
h thatz(x) = v(x) + Z x0 K(x; y)f(y; z(y)) dy:As above we set L : C([0; 1℄)! C([0; 1℄) byLz(x) = Z x0 K(x; y)f(y; z(y)) dyand show that the map T : C([0; 1℄)! C([0; 1℄), de�ned byT (z) = v + Lzhas a unique �xed point. Here 
omes a ni
e tri
k! For a > 0 we introdu
e a newnorm k � ka on C([0; 1℄): kzka = Z 10 e�ayjz(y)j dy:Then k � ka is indeed a norm on C([0; 1℄) whi
h is equivalent to the L1 norm. SetXa = (C([0; 1℄); k � ka) and let ~Xa be the 
ompletion of Xa. Clearly ~Xa is the ve
torspa
e L1([0; 1℄) with the norm k � ka, and L extends to a map ~L : ~Xa ! ~Xa given bythe formula for L. Furthermore withM = max0�x;y�1 jK(x; y)j6



we have for z1; z2 2 ~Xak~Lz1 � ~Lz2ka = Z 10 e�ayj Z y0 K(y; t)(f(t; z1(t))� f(t; z2(t))) dtj dy ��MN Z 10 Z y0 e�ayjz1(t)� z2(t)j dt dy =MN Z 10 Z 1t e�ayjz1(t)� z2(t)j dy dt ==MN Z 10 e�at � e�aa jz1(t)� z2(t)j dt � MNa kz1 � z2ka:This shows that for a > MN the map~L : ~Xa ! ~Xais a 
ontra
tion and so is ~T = v + ~L. It easily follows that ~T maps ~Xa into Xa, sothe unique �xed point belongs to C([0; 1℄), and is also the unique �xed point for T .1.3 Brouwer and S
hauder �xed point theoremsWe start by formulating Brouwer �xed point theorem.Theorem 1.4 (Brouwer's �xed point theorem). Assume that K is a 
ompa
t
onvex subset of Rn and that T : K ! K is a 
ontinuous mapping. Then T has a�xed point in K.Observe that it does not follow from Brouwer �xed point theorem that the �xedpoint is unique. Consider for instan
e the identity operator on a 
ompa
t 
onvexset K in Rn for whi
h every x 2 K is a �xed point.Example 1: Take a street map for Goteborg and pla
e it on the 
oor of the le
tureroom at Chalmers. Then there will be a point on the map that 
oin
ides withthe 
orresponding point in Goteborg. This follows from both Bana
h's �xed pointtheorem and Brouwer's �xed point theorem, where the former theorem also givesthat the point is unique. Prove this to yourself!Example 2: Let T� denote the rotation � degrees around the 
enter for a 
loseddis
 K of radius 1. Then Brouwer's �xed point theorem gives the existen
e of a�xed point for T� (of 
ourse it is overkill to use a �xed point theorem to see that)while Bana
h's �xed point theorem 
annot be applied dire
tly3 sin
e T� is not a
ontra
tion. It is obvious that the 
enter is a �xed point but Brouwer's �xed pointtheorem also tells us that it is not possible to 
ompose the rotation with a 
ontinuous3Assume that the dis
 has its 
enter at the origin in Rn. Apply Bana
h's �xed point theoremto the operators Tn = (1� 1n )T; n = 1; 2; : : :. We obtain a sequen
e of �xed points xn to Tn su
hthat kT (xn)� xnk � 1n; n = 1; 2; 3; : : : :The result follows from Theorem 1.1 above. 7



deformation of the dis
 into itself in su
h a way that the 
omposed mapping has no�xed point.We note that� (generalization of Brouwer's �xed point theorem): If there exists a homeomor-phism, i.e. a 
ontinuous bije
tion with 
ontinuous inverse, between a 
ompa
t
onvex set K in Rn and a set ~K, 
all the homeomorphism ', and ~T : ~K ! ~Kis a 
ontinuous mapping then ~T has a �xed point. To see this 
onsider themapping T = '�1 Æ ~T Æ '.Exer
ise: Prove that ~T has a �xed point.� it is enough to prove Brouwer �xed point theorem in the 
ase4 K = B(0; 1).There are many proofs for Brouwer's �xed point theorem, both analyti
al, topolog-i
al and 
ombinatorial. We just sket
h one proof. Assume that K = B(0; 1) andthat T has no �xed point. De�ne the mapping A : B(0; 1)! B(0; 1) as follows: Forevery inner point x in B(0; 1) let ~x denote the point on the boundary �B(0; 1) thatis the interse
tion of the ray from T (x) through x and the boundary �B(0; 1). Theray is always well-de�ned sin
e T has no �xed point. Now setA(x) = � ~x if x 2 B(0; 1)x if x 2 �B(0; 1)Then A is a 
ontinuous mapping from �B(0; 1) into �B(0; 1) (verify this!) su
hthat Aj�B(0;1) = Ij�B(0;1). The problem to show that T has no �xed point is nowreformulated as to show that there is no 
ontinuous mapping A : B(0; 1)! �B(0; 1)su
h that Aj�B(0;1) = Ij�B(0;1). The statement that there is no su
h mapping is deepbut never the less intuitively obvious5. Consider, for n = 2, the 
ase with an elasti
membrane �xed on a 
ir
ular frame. The existen
e of a mapping A implies thatit should be possible to deform the membrane 
ontinuously in su
h a way that itshould 
oin
ide with the frame without being fra
tured. For �xed x 2 B(0; 1) themapping t 7! (1� t)x + tA(x); t 2 [0; 1℄des
ribes how this point on the membrane is moved from x at t = 0 to A(x) 2�B(0; 1) at t = 1, under the deformation. Do not forget that the membrane shouldbe �xed at the frame!!!Another beautiful proof based on Sperner's lemma will be indi
ated in the Exer
ises[5℄.We present Perron's theorem as an appli
ation of Brouwer's �xed point theorem.S
hauder's �xed point theorem will be applied in the 
ontext of nonlinear di�eren-tial/integral equations to prove the existen
e of solutions.4B(a; r) = fx 2 Rn : kx� ak < rg5Another su
h result that appears to be obviously true but hard to prove is the Jordan 
urvetheorem. This theorem says that every simple (no self-interse
tions) 
losed (the end points 
oin
ide)
urve in the plane, i.e. every 
ontinuous inje
tive mapping 
 : S1 ! R2, de
omposes the plane intwo 
onne
ted 
omponents. Here S1 denotes the set f(x; y) 2 R2 : k(x; y)k = 1g.8



Theorem 1.5 (Perron's theorem). Let A be a real n � n{matrix with positiveentries. Then there exists a positive eigenvalue for the linear mapping given by thematrix A, with an eigenve
tor with positive entries6.In a �nite-dimensional normed spa
e 
ompa
tness is equivalent to 
losedness andboundedness. This is not the 
ase in an in�nite-dimensional normed spa
e. Thefollowing example due to Kakutani should be 
ompared to the next �xed pointtheorem due to S
hauder.Example: Let B denote the 
losed unit ball in l2(Z), where l2(Z) 
onsists of allelements x = (: : : ; x�1; x0; x1 : : :) su
h that kxk = (�1n=�1jxnj2) 12 < 1. It is 
learthat B is 
onvex and bounded. Let z be the element in l2(Z) that satis�es z0 = 1and zn = 0 for n 6= 0 and let S denote the shift operator de�ned by (S(x))n = xn�1for n 2 Z. Now set T : l2(Z)! l2(Z);where T (x) = S(x) + (1� kxk)z:We have kT (x)k � kS(x)k+ (1� kxk) = 1for x 2 B, i.e. T (x) 2 B. But T has no �xed point in B sin
e(T (x))n = xn�1; n 6= 0and (T (x))0 = x�1 + (1� kxk);whi
h implies that x0 = x1 = : : : = xn = : : : and x�1 = x�2 = : : : = x�n = : : :. Thisyields a 
ontradi
tion sin
e x 2 l2(Z). Prove this to yourself!From this example we see that a generalization of Brouwer's �xed point theorem toin�nite-dimensional spa
es should have the assumption that T (K) is a 
ompa
t set.We next formulate two versions of S
hauder's �xed point theorem.Theorem 1.6 (S
hauder's �xed point theorem). Assume that K is a 
onvex
ompa
t set in a Bana
h spa
e X and that T : K ! K is a 
ontinuous mapping.Then T has a �xed point.For appli
ations the following generalization proves to be useful.Theorem 1.7 (generalization of S
hauder's �xed point theorem). Let F bea 
losed 
onvex set in a Bana
h spa
e X and assume that T : F ! F is a 
ontinuousmapping su
h that T (F ) is a relatively 
ompa
t subset of F . Then T has a �xedpoint.6Hint: Let K denote the set f(x1; : : : ; xn) : xi � 0 all i; �ni=1xi = 1g and set T (x) =Ax=kAxkl1 for x 2 K. 9



We re
all that a set K1 � X is 
ompa
t7 if every sequen
e in K1 has a 
onvergentsubsequen
e in K1. Moreover we say that K2 � X is relatively 
ompa
t if everysequen
e in K2 has a subsequen
e that 
onverges in X. The limit element of the
onverging sequen
e belongs to K2. The set K2 being relatively 
ompa
t impliesthat K2 is a 
ompa
t set. Also an arbitrary subset of a 
ompa
t set is relatively
ompa
t.To prove S
hauder's �xed point theorem we will make use of some new 
on
epts andfa
ts for 
ompa
t sets. We say that the 
onvex hull of a set F is the set, denotedby 
oF , that is de�ned by \F�H;H 
onvexH:By a 
onvex 
ombination of the elements x1; x2; : : : ; xn we mean a linear 
ombination�ni=1�ixn, where all �i � 0 and �ni=1�i = 1. An �{net is a subset F� of F with theproperty that for ea
h x 2 F there exists a y 2 F� su
h that kx� yk < �.Proposition 1.1. The following statements are true:1. A set F is relatively 
ompa
t i� for ea
h � > 0 there exists a �nite �{net.2. A set K is 
ompa
t i� it is 
losed and for every � > 0 there exists a �nite�{net.3. The set 
oF is the same as the set of all 
onvex 
ombination of �nitely manyelements in F .4. K 
ompa
t set implies that 
oK is 
ompa
t.The proof is left as an exer
ise.Proof. (of the S
hauder theorems) The se
ond S
hauder theorem is a 
onsequen
eof the �rst one. To see this assume that the hypothesis of the se
ond theorem aresatis�ed. It then follows that the 
losed hull R of R = T (F ) is 
ompa
t and so also
oR. Set K = 
oR. We see that K � F sin
e F is 
losed and 
onvex. MoreoverT : K ! K is 
ontinuous. Hen
e the se
ond theorem follows from the �rst theorem.It remains to prove the �rst theorem. This will be done by approximating the
ompa
t set K by 
ompa
t sets Kn, n = 1; 2; : : : in �nite-dimensional spa
es andapproximating the mapping T by 
ontinuous mappings Tn : Kn ! Kn, where theapproximation be
omes better and better for larger n. Brouwer's �xed point theoremgives a sequen
e of points (xn) that are �xed points for the sequen
e (Tn), from whi
h7This de�nition of 
ompa
tness and relative 
ompa
tness is sometimes referred to as sequential
ompa
tness and sequential relatively 
ompa
tness in the literature. The words 
ompa
tness andrelatively 
ompa
tness are then reserved to mean the following: A set K in a normed spa
e is
alled 
ompa
t if for ea
h open 
over of K there is a �nite sub
over. An open 
over of K is a
olle
tion of open sets O�, � 2 �, whose union 
ontains K as a subset. A �nite sub
over is a �nitesubset of fO�g�2� whose union also 
ontains the set K. It 
an be shown that for metri
 spa
es Xthe notions sequentially 
ompa
t and 
ompa
t are equivalent.10



a 
onverging subsequen
e of points (xnk) 
an be extra
ted. The limit element of thissequen
e will be a �xed point for T .For every positive integer n we de�ne mappings Pn, 
alled S
hauder proje
tions,as follows: The 
ompa
tness of K implies that there are �nitely many elementsx1; : : : ; xk 2 K su
h that K � k[i=1B(xi; 1n):Set fi(x) = max(0; 1n � kx� xik); i = 1; : : : ; k:For every x 2 K there exists an i su
h that fi(x) > 0. This implies that �ki=1fi(x) >0 for all x 2 K. Now set Kn = 
ofx1; : : : ; xkg andPn(x) = �ki=1fi(x)xi�ki=1fi(x) ; x 2 K:Finally we de�ne Tn = PnT jKn. We 
an now apply Brouwer's theorem to everymapping Tn : Kn ! Kn; n = 1; 2; : : :This yields a sequen
e of �xed points xn for Tn. We obtainPnT (xn) = xn;and hen
e we get kT (xn)� xnk < 1n:S
hauder's theorem now follows from Theorem 1.1.1.4 Continuity and appli
ationsTo apply the �xed point theorems above some results for 
ontinuous fun
tions willoften be applied.Theorem 1.8. Assume that T is a 
ontinuous mapping between two Bana
h spa
esX and Y . Then the following statements are true:1. If K is a 
ompa
t set in X then T (K) is a 
ompa
t set in Y .2. If Y = R then T attains its maximum and its minimum on every 
ompa
t setK in X, i.e. there are x0; x1 2 K su
h thatsupx2K f(x) = T (x0) = maxx2K T (x)and infx2K T (x) = T (x1) = minx2K T (x):11



3. T is uniformly 
ontinuous on every 
ompa
t set in X.The di�erent notions of 
ontinuity that is and will be used are: Let T : X ! Y bea mapping between two Bana
h spa
es. Then T is 
alled
ontinuous if for ea
h x 2 X and ea
h � > 0 there exists a Æ = Æ(x; �) > 0 su
hthat for every y 2 Xky � xkX < Æ ) kT (y)� T (x)kY < �:uniformly 
ontinuous on A , where A � X, if for ea
h � > 0 there exists aÆ = Æ(�) > 0 su
h that for every x; y 2 A we haveky � xkX < Æ ) kT (y)� T (x)kY < �:If T� : X ! Y , � 2 � is a set of mappings (�nitely many or in�nitely many) betweentwo Bana
h spa
es then these are 
alledequi
ontinuous on A , where A � X, if for ea
h � > 0 there exists a Æ = Æ(�) > 0su
h that for every pair of elements x; y 2 A and every � 2 � we haveky � xkX < Æ ) kT�(y)� T�(x)kY < �:Proof. (of Theorem 1.8) To prove statement 1) let T : X ! Y be a 
ontinuousmapping and K a 
ompa
t set in X. Pi
k an arbitrary sequen
e (yn) � T (K). Thenthere exists a sequen
e (xn) in K su
h that T (xn) = yn for all n. The sequen
e (xn)might not be uniquely determined sin
e T is not assumed to be inje
tive. But sin
eK is a 
ompa
t set there exists a 
onvergent subsequen
e (xnk) of (xn) in K, i.e.there is an element x 2 K su
h that xnk ! x as k ! 1. Moreover sin
e T is
ontinuous we have xnk ! x) ynk = T (xnk)! T (x) 2 T (K):This proves 1).The proof of statement 2) is left as an exer
ise.To prove statement 3) assume that K is a 
ompa
t set of X and that T : X ! Y is
ontinuous. Moreover assume that T is not uniformly 
ontinuous on K. Then thereexists an � > 0 su
h that for all positive integers n there are points xn; yn 2 K su
hthat kyn � xnkX < 1n (2)and kT (yn)� T (xn)kY � �: (3)But K is a 
ompa
t set and so there exists a 
onvergent subsequen
e (xnk) of (xn),i.e. for some x 2 K we have xnk ! x. From (2) it follows that ynk ! x sin
e wehave kynk � xkX � kynk � xnkkX + kxnk � xkX :12



Moreover T is 
ontinuous and so T (xnk)! T (x) and T (ynk)! T (x). This gives a
ontradi
tion of (3). The statement 3) is proved.The Bana
h spa
es that will be used in appli
ations are C(A) and Lp(A), 1 � p <1.Here A stands for di�erent subsets of Rn for n � 1. Of 
ourse the norms should bethe proper ones e.g. the sup-norm should be used for C(A). We ta
itly understandthat the proper norm is used unless something else is stated. In the 
ontext ofS
hauder's �xed point theorem it is important to be able to 
on
lude whether ornot a subset of C(A) or Lp(A) is 
ompa
t. Our next result answers that questionfor the 
ase C(A).Theorem 1.9 (Arzela-As
oli theorem). Assume that K is a 
ompa
t set in Rn,n � 1 (e.g. K = [a; b℄ � R). Then a set S � C(K) is relatively 
ompa
t in C(K)i� the fun
tions in S are uniformly bounded and equi
ontinuous on K.To say that the fun
tions in S are uniformly bounded means that there exists aM > 0 su
h that kfk = supx2K jf(x)j �M all f 2 S:To say that the fun
tions in S are equi
ontinuous on K means that for every � > 0there exists an Æ > 0 su
h that for every x; y 2 K and every f 2 S we havejx� yj < Æ ) jf(x)� f(y)j < �:The Arzela-As
oli theorem 
an be generalized to the whole of Rn if we assume thatthe fun
tions uniformly tends to 0 at in�nity i.e. as jxj ! 1.Next we formulate a 
riteria for 
ompa
tness for sets of Lp-fun
tions.Theorem 1.10 (Riesz, Kolmogorov). Assume that 1 � p < 1 and that S �Lp(Rn). Then S is relatively 
ompa
t in Lp(Rn) i� the following 
onditions aresatis�ed:1. S is a bounded set in Lp(Rn), i.e. there exists a M > 0 su
h that kfkLp �Mfor all f 2 S,2. limx!0 RRn jf(y+ x)� f(y)jp dy = 0 uniformly in S, i.e. for every � > 0 thereexists a Æ > 0 su
h thatjxj < Æ o
h f 2 S ) kf(�+ x)� f(�)k � (ZRn jf(y + x)� f(y)jp dy)1=p < �;3. limR!1 kfkLp(RnnB(0;R)) = (Rjxj>R jf(x)jp dx)1=p = 0 uniformly in S, i.e. forevery � > 0 there exists a ! > 0 su
h thatR > ! o
h f 2 S ) (Zjxj>R jf(x)jp dx)1=p < �:13



We are now ready to apply S
hauder's theorem. In general, we note the di�eren
ein applying S
hauder's theorem to applying Bana
h's theorem, namely to applyBana
h's theorem we have to show that a mapping is suÆ
iently small, while toapply S
hauder's theorem we have to prove that a mapping is 
ompa
t. This meansthat, in the C(A) or Lp 
ase, we have to show that the image set for the mapping
onsists of more \regular" fun
tions.Example (an integral equation of Hammerstein-type): Assume that K(x; y)is a 
ontinuous fun
tion for 0 � x; y � 1 and that f(y; z) is a bounded 
ontinuousfun
tion for 0 � y � 1 and z 2 R. Then the equationz(x) = Z 10 K(x; y)f(y; z(y)) dyhas a 
ontinuous solution z(x).We want to prove that T (z), z 2 C([0; 1℄), has a �xed point where (T (z))(x) =R 10 K(x; y)f(y; z(y)) dy: To show this we will apply the generalization of S
hauder's�xed point theorem. We will 
hoose a 
losed 
onvex subset S � C([0; 1℄) su
h thatthe mapping T : S ! C([0; 1℄) is 
ontinuous and the image set T (S) is relatively
ompa
t in C([0; 1℄).First we observe that T maps 
ontinuous fun
tions to 
ontinuous fun
tions, i.e. thatwe have T (C([0; 1℄)) � C([0; 1℄):This 
an be seen as follows: From the hypothesis there exists a B > 0 su
h thatjf(y; z)j � B if (y; z) 2 [0; 1℄�R:Moreover K(x; y) is 
ontinuous on the 
ompa
t set [0; 1℄ � [0; 1℄ and hen
e K isuniformly 
ontinuous on [0; 1℄� [0; 1℄. Fix an � > 0. Then there exists a Æ > 0 su
hthat jK(x; y)�K(~x; ~y)j < �B if j(x; y)� (~x; ~y)j < Æ:Consequently for arbitrary z 2 C([0; 1℄) we havej(T (z))(x)� (T (z))(~x)j = j Z 10 (K(x; y)�K(~x; y))f(y; z(y)) dyj �� Z 10 jK(x; y)�K(~x; y)jjf(y; z(y))j dy � B Z 10 jK(x; y)�K(~x; y)j dy < �provided jx� ~xj < Æ. This means that T (z) 2 C([0; 1℄).A natural 
hoi
e for the 
losed 
onvex set S is as follows:S = fu 2 C([0; 1℄) : kuk � Dg;where D > 0 is a 
onstant that should be 
hosen su
h that T (S) � S. We note thatsin
e K is 
ontinuous on the 
ompa
t set [0; 1℄ � [0; 1℄ there exists an A > 0 su
hthat jK(x; y)j � A if (x; y) 2 [0; 1℄� [0; 1℄:14



This implies thatj(T (z))(x)j = j Z 10 K(x; y)f(y; z(y)) dyj � Z 10 jK(x; y)jjf(y; z(y))j dy � AB:We get kT (z)k � Dprovided we 
hoose D � AB. For instan
e set D = AB. With this 
hoi
e for S weget T (S) � S:To apply S
hauder's theorem we have to show that T (S) is relatively 
ompa
t inC([0; 1℄) and that T is 
ontinuous on S. The relatively 
ompa
tness is 
onsequen
eof Arzela-As
oli theorem on
e we have shown that T (S) is uniformly bounded andequi
ontinuous on S.We have above veri�ed that T (C([0; 1℄)) is uniformly bounded and equi
ontinuouson S. It remains to prove that T : S ! T (S) is 
ontinuous. From the de�nition of Sit follows that jz(x)j � D for all x 2 [0; 1℄. The 
ontinuity of f(y; z) on the 
ompa
tset [0; 1℄� [�D;D℄ implies that f is uniformly 
ontinuous on [0; 1℄� [�D;D℄. Fixan arbitrary � > 0. Then there exists a Æ > 0 su
h thatjf(y; z)� f(~y; ~z)j < �A if j(y; z)� (~y; ~z)j < Æ:Hen
e for arbitrary z1; z2 2 S we havekT (z1)� T (z2)k = supx2[0;1℄ j Z 10 K(x; y)(f(y; z1(y))� f(y; z2(y))) dyj �� supx2[0;1℄Z 10 jK(x; y)jj(f(y; z1(y))� f(y; z2(y)))j dy �� A Z 10 j(f(y; z1(y))� f(y; z2(y)))j dy < �:Now we have shown that T is 
ontinuous on S. S
hauder's �xed point theoremimplies that the equation z = T (z) has at least one solution.1.5 Some more �xed point theoremsWe 
on
lude the note with some additional �xed point theorems. The �rst one,S
haefer's �xed point theorem, is a version of S
hauder's theorem. Sometimes it is
alled the Leray-S
hauder prin
iple and is an example of the mathemati
al prin
iplesaying "apriori estimates implies existen
e". The se
ond one, Krasnoselskii's �xedpoint theorem, is a mix of Bana
h's and S
hauder's �xed point theorems.Theorem 1.11 (S
haefer's �xed point theorem). Assume that X is a Bana
hspa
e and that T : X ! X is a 
ontinuous 
ompa
t8 mapping. Moreover assume8T is a 
ompa
t mapping if (T (xn))1n=1 has a 
onvergent subsequen
e for every bounded se-quen
e (xn)1n=1 in X . Usually by a 
ompa
t (or 
ompletely 
ontinuous) mapping one means a
ontinuous mapping with the property above. For linear mappings the 
ontinuity follows from thisproperty but it is not true in general for nonlinear mappings.15



that the set [0���1fx 2 X : x = �T (x)gis bounded. Then T has a �xed point.Proof. Assume that the mapping T satis�es the hypothesis in the theorem. Pi
k aR > 0 su
h that x = �T (x) and 0 � � � 1implies that kxk < R:De�ne the mapping ~T : X ! X as follows:~T (x) = 8<: T (x); if kT (x)k � RRkT (x)kT (x) if kT (x)k > RThis implies that ~T : X ! X is a 
ompa
t operator. To show this take abounded sequen
e (xn)1n=1 in X. Then there exists a subsequen
e (xnk)1k=1 su
hthat kT (xnk)k < R for all k or kT (xnk)k � R for all k. In the �rst 
ase ( ~T (xnk))1k=1has a 
onvergent subsequen
e sin
e ~T (xnk) = T (xnk) and T is a 
ompa
t mapping.In the se
ond 
ase we get that (T (xnk))1k=1 has a 
onvergent subsequen
e, denote itby (T (xl))1l=1 for 
onvenien
e. But then it follows that also (kT (xl)k)1l=1 
onverges,where also kT (xl)k � R for all l. Hen
e we obtain ~T (xl) = RkT (xl)kT (xl).Set K = 
o ~T (B(0; R)):Here K is 
onvex (it is the 
onvex hull of a set), 
ompa
t (the 
onvex hull of a
ompa
t set is 
ompa
t and ~T is a 
ompa
t mapping) subset of X su
h that~T : K ! K:S
hauder's �xed point theorem implies that ~T has a �xed point x0 2 K. But x0is a �xed point for T if kT (x0)k � R. Assume that kT (x0)k > R. This yields a
ontradi
tion sin
e x0 = ~T (x0) = �T (x0), where � = RkT (x0)k 2 (0; 1), sin
e a

ordingto the hypothesis of the theorem it should follow that kT (x0)k = kx0k < R. Thisproves the theorem.In parti
ular, note that to apply S
haefer's theorem we do not need to prove that a
ertain set is 
onvex or 
ompa
t. The problem is reformulated as to show 
ertain apriori estimates for the operator T .Theorem 1.12 (Krasnoselskii's �xed point theorem). Assume that F is a
losed bounded 
onvex subset of a Bana
h spa
e X. Furthermore assume that T1and T2 are mappings from F into X su
h that1. T1(x) + T2(y) 2 F for all x; y 2 F ,16



2. T1 is a 
ontra
tion,3. T2 is 
ontinuous and 
ompa
t.Then T1 + T2 has a �xed point in F .Proof. Assume that the mappings T1; T2 satis�es the hypothesis of the theorem. Inparti
ular there exists a 
 2 (0; 1) su
h thatkT1(x)� T1(y)k � 
kx� yk; x; y 2 F:This yieldsk(I � T1)(x)� (I � T1)(z)k � kx� zk � kT1(x)� T1(z)k � (1� 
)kx� zkand k(I � T1)(x)� (I � T1)(z)k � kx� zk + kT1(x)� T1(z)k � (1 + 
)kx� zk:Consequently I � T1 : F ! (I � T1)(F ) is a homeomorphism, and (I � T1)�1 existsas a 
ontinuous mapping from (I�T1)(F ). Furthermore we note that for ea
h y 2 Fthe equation x = T1(x) + T2(y)has a unique solution x 2 F a

ording to Bana
h's �xed point theorem. From this we
on
lude that T2(y) 2 (I�T1)(F ) for every y 2 F and also that (I�T1)�1T2 : F ! Fis a well-de�ned 
ontinuous mapping. Sin
e T2 is a 
ompa
t mapping it follows that(I�T1)�1T2 : F ! F is a 
ompa
t mapping. Finally the generalization of S
hauder's�xed point theorem yields the 
on
lusion of the theorem.We 
on
lude the note by re
ommending anyone interested in �xed point theoremsto browse through the book [6℄ by Smart where additional results and many morereferen
es 
an be found.Referen
es[1℄ L.Debnath/P.Mikusinski, Introdu
tion to Hilbert Spa
es with Appli
ations 2nded., A
ademi
 Press 1999[2℄ A.Friedman, Foundations of modern analysis, Holt Rinehart and Winston, 1970[3℄ E.Kreyszig, Introdu
tion to fun
tional analysis with appli
ations, Wiley 1989[4℄ P.Kumlin, A note on Spe
tral Theory, Mathemati
s, Chalmers & GU 2004/2005[5℄ P.Kumlin, Exer
ises, Mathemati
s, Chalmers & GU 2004/2005[6℄ D.R.Smart, Fixed Point Theorems, Cambridge Univ. Press 197317


