
TMA 401/MAN 670 Funtional Analysis 2004/2005Peter KumlinMathematisChalmers & GU1 A Note on Fixed Point Theory1.1 IntrodutionThis note ontains topis from nonlinear funtional analysis. It means that themappings appearing are not assumed to be linear unless expliitly stated to be so.Our main problem is to solve equations of the formT (u) = v;where T : X ! Y is a mapping between Banah spaes X and Y . Here v 2 Y isgiven and we look for solutions in X or some subset of X. For linear mappings T wean often �nd a formula for the inverse operator. The solution has to be uniquelyde�ned in this ase. An example of this is boundary value problems� u(n) + an�1u(n�1) + : : :+ a1u0 + a0u = v; in Ihomogeneous boundary values on �IThe solutions are obtained as onvolutions of the Green's funtion for the problemwith the right hand side v of the di�erential equation.However if T is a nonlinear mapping then in general we an not �nd a formularepresenting the solution/solutions. This is also the ase when X = Y . We an nolonger prove the existene of a solution just by expliitly writing down the inverseoperator, but we have rely on mapping properties of T to prove the existene of asolution. It might be the ase that there are several solutions.In onnetion with integral equations for instane we have X = Y and the mappingT takes the form T (u) = u+G(u);i.e. T is a perturbation of the identity mapping. Then the problem an be formulatedas u = H(u);whereH(u) = v�G(u). Here we suppress the variable v and onsiderH as a funtionof u with v as a parameter. The problem to �nd a solution is then equivalent to�nd a �xed point of H, i.e. an element u0 2 X suh thatu0 = H(u0):1



We reall that if G is linear and small in the sense that the operator norm of G isless than 1 then the mapping T�1 is a wellde�ned bounded linear mapping and anbe obtained as a Neumann series (see [4℄).The �xed point results that will be disussed are of two types. The �rst type dealswith ontrations and are referred to as Banah's �xed point theorems. The seondtype deals with ompat mappings and is more involved. Names assoiated withsuh results are Brouwer and Shauder.Let us now onsider a simple example. Assume thatf : [0; 1℄! [0; 1℄is a ontinuous funtion. Then there exists a x0 2 [0; 1℄ suh that f(x0) = x0. This isa onsequene of the theorem saying that a real-valued ontinuous funtion attainsevery intermediary value between any two given values and is based on the fat that1. [0; 1℄ is a onneted losed (i.e. a ompat1 and onvex) subset in a Banahspae, here R, and that2. f is a ontinuous funtion.To prove the existene of a �xed point for f just de�ne the funtion g(x) = x�f(x)on the interval [0; 1℄ and observe that g is a ontinuous funtion satisfying g(0) �0 � g(1). We an then onlude that there is a x0 2 [0; 1℄ suh that g(x0) = 0.This example an be onsidered as the 1-dimensional version of Brouwer �xed pointtheorem. One feature here is that the method is not onstrutive, i.e. the positionof the �xed point is not given by the method. Nor does the method yield that the�xed point is unique, whih indeed is sound sine there an be any number of �xedpoints for f . To get some information on the position of one �xed point we anuse the strategy of repeatedly utting intervals into piees as follows: Assume thatg(0) < 0 < g(1), sine otherwise we already have one �xed point, and onsider thesubintervals [0; 12 ℄ and [12 ; 1℄. If g(12) = 0 we have one �xed point namely x0 = 12 .If g(12) > 0 or g(12) < 0 we an apply the proedure to the the restrition of thefuntion g to the subintervals [0; 12 ℄ and [12 ; 1℄ respetively. In this way we either�nd a �xed point as an end point of an interval or we �nd an in�nite set of nestedshrinking intervals that all ontains a �xed point. For the later ase we an for any� > 0 �nd an interval of length less than � that ontains a �xed point. We also notethat this argument proves the intermediary value theorem provided we have that Ris a omplete normed spae, i.e. a Banah spae. Also ompare the argument abovewith the proof of Baire's theorem.1.2 Banah's �xed point theoremFirst we look at the problem to �nd a �xed point for a real-valued ontinuousfuntion f : R! R in the spirit of Banah's �xed point theorem. We then need f1f. g : (0; 1)! (0; 1) with g(x) = x2 . 2



to be a ontration meaning that there is a positive real number  less than 1 suhthat for any pair x; y of points the distane between the images under f of thesepoints are loser by a fator  than the distane between the points x and y. Informulas this means jf(x)� f(y)j � jx� yjfor arbitrary x; y 2 R. The onlusion from Banah �xed point theorem is thatthere is a unique �xed point for f . This an be found by just �xing any elementz 2 R and then forming the sequene2 (T n(z))1n=1. This is a onverging sequenewith the �xed point as the limit point. On the other hand there is no restrition onthe domain of f being a onvex ompat set.We �rst state and prove some general observations.Theorem 1.1. Let T be a ontinuous mapping on a Banah spae X. Then thefollowing statements hold true:1. If there exist x; y 2 X suh thatlimn!1T n(x) = ythen y is a �xed point for T , i.e. T (y) = y.2. If T (X) is a ompat set in X and for eah � > 0 there exists a x� 2 X suhthat kT (x�)� x�k < �then T has a �xed point.Proof. Set yn = T n(x), n = 1; 2; : : :. If T is a ontinuous mapping thenT (y) = T ( limn!1 yn) = limn!1T (yn) = limn!1 yn+1 = y;whih proves the �rst statement.Assume that the assumptions of 2) are satis�ed. Then for n = 1; 2; : : : there arexn 2 X suh that kT (xn)� xnk < 1n: (1)T (X) is a ompat set implies that there exits a onvergent subsequene (T (xnk))1k=1of (T (xn))1n=1. Call the limit point x. Then x is a �xed point for T sine also thesequene (xnk)1k=1 onverges to x aording to (1) and T is ontinuous.We now formulate one of the main theorems.Theorem 1.2 (Banah's �xed point theorem). Let T be a ontration on aBanah spae X. Then T has a unique �xed point.2Tn denotes the operator obtained by omposing T with itself n times, i.e. Tn = T Æ T Æ : : : Æ T| {z }n elements .3



Proof. Fix an arbitrary element z 2 X and onsider the sequene(T n(z))1n=1:Set zn = T n(z) for n = 1; 2; : : :. We note thatkzn � zmk � kzn � zn�1k+ : : :+ kzm+1 � zmk == kT (zn�1)� T (zn�2)k+ : : :+ kT (zm)� T (zm�1)k �� kzn�1 � zn�2k+ : : :+ kzm � zm�1k � : : : �� (n�1 + n�2 + : : : m�1)kz1 � zk � m�11� kz1 � zk;where we (without loss of generality) have assumed n > m � 1. This yieldskzn � zmk ! 0 as n;m!1 and hene (zn)1n=1 is a Cauhy sequene. Sine X is aBanah spae the sequene onverges, i.e. there is a x0 2 X suh that zn ! x0 asn!1. Here x0 is a �xed point for T sinekT (x0)� x0k � kT (x0)� T (zn)k+ kzn+1 � x0k � kx0 � znk+ kzn+1 � x0kwhere the LHS is independent of n and the RHS tends to 0 as n ! 1. Theuniqueness follows from the ontration property for T . If x0 6= y0 both are �xedpoints of T then we getkx0 � y0k = kT (x0)� T (y0)k � kx0 � y0k < kx0 � y0kwhih yields a ontradition.From the proof we see that1. the sequene (T n(z))1n=1 onverges to the unique �xed point independentlyof the hoie of z.2. for an arbitrary element x 2 X we havekx� x0k � 11� kx� T (x)k;where x0 denotes the �xed point of T , sinekx� x0k � kx� T (x)k+ kT (x)� T (x0)k � kx� T (x)k+ kx� x0k:Banah's �xed point theorem an be generalized in the following way.Theorem 1.3. Let T be a mapping on a Banah spae X suh that TN is a on-tration on X for some positive integer N . Then T has a unique �xed point.4



It is not neessary to assume that T is ontinuous.Proof. Banah's �xed point theorem implies that there exists a unique �xed pointfor TN . Call this element x0. Now just note thatkT (x0)� x0k = kTN(T (x0))� TN(x0)k � kT (x0)� x0kimplies that T (x0) = x0 sine 0 <  < 1. The uniqueness is lear sine a �xed pointfor T is also a �xed point for TN .We end this setion by two examples.Example: Let K(x; y) be a ontinuous real-valued funtion for 0 � x; y � 1 and letv(x) be a ontinuous real funtion for 0 � x � 1. Then there is a unique ontinuousreal funtion z(x) suh thatz(x) = v(x) + Z x0 K(x; y)z(y) dy; 0 � x � 1:To prove this we onsider the Banah spae C([0; 1℄) with the sup-norm and de�nethe integral operator L : C([0; 1℄)! C([0; 1℄) byLz(x) = Z x0 K(x; y)z(y) dy:Clearly Ln will be an integral operator on C([0; 1℄) given by the kernel funktionKn(x; y). To �nd this funtion set K1(x; y) = K(x; y) and assume that Kn(x; y) isknown. Then we obtain(Ln+1z)(x) = Z x0 K(x; t)(Lnz)(t) dt = Z x0 K(x; t) Z t0 Kn(t; y)z(y) dy dt == Z x0 (Z xy K(x; t)Kn(t; y) dt)z(y) dy = Z x0 Kn+1(x; y)z(y) dy:Hene Kn+1(x; y) = Z xy K(x; t)Kn(t; y) dt; 0 � y � x � 1:The funtion K(x; y) is ontinuous on the losed unit square and so it is bounded,say jK(x; y)j �Mfor all 0 � y � x � 1. Then again by indution we see thatjKn(x; y)j � Mnjx� yjn�1(n� 1)!for all 0 � y � x � 1. Indeed if this holds for n then for 0 � y � x � 1jKn+1(x; y)j � Z xy MMnjt� yjn�1(n� 1)! dt � Mn+1jx� yjnn! :5



Hene if n is suÆiently large thenjKn(x; y)j � 12for 0 � y � x � 1 and soj(Lnz)(x)j � Z x0 jKn(x; y)j jz(y)j dy � 12kzk;i.e. kLnk � 12 :We now de�ne T : C([0; 1℄)! C([0; 1℄) by Tz = v + Lz. HereT nz = (�n�1k=0Lk)v + Lnz;whih yields that T n is a ontration on C([0; 1℄). By Theorem 1.3 the mapping Thas a unique �xed point.Example: Let K(x; y) and f(y; z) be ontinuous real-valued funtions for 0 �x; y � 1 and z 2 R. Moreover let v(x) be a ontinuous real funtion for 0 � x � 1.Assume that jf(y; z1)� f(y; z2)j � N jz1 � z2jfor all 0 � y � 1 and z1; z2 2 R. Our laim is that there exists a unique ontinuousfuntion z(x) on 0 � x � 1 suh thatz(x) = v(x) + Z x0 K(x; y)f(y; z(y)) dy:As above we set L : C([0; 1℄)! C([0; 1℄) byLz(x) = Z x0 K(x; y)f(y; z(y)) dyand show that the map T : C([0; 1℄)! C([0; 1℄), de�ned byT (z) = v + Lzhas a unique �xed point. Here omes a nie trik! For a > 0 we introdue a newnorm k � ka on C([0; 1℄): kzka = Z 10 e�ayjz(y)j dy:Then k � ka is indeed a norm on C([0; 1℄) whih is equivalent to the L1 norm. SetXa = (C([0; 1℄); k � ka) and let ~Xa be the ompletion of Xa. Clearly ~Xa is the vetorspae L1([0; 1℄) with the norm k � ka, and L extends to a map ~L : ~Xa ! ~Xa given bythe formula for L. Furthermore withM = max0�x;y�1 jK(x; y)j6



we have for z1; z2 2 ~Xak~Lz1 � ~Lz2ka = Z 10 e�ayj Z y0 K(y; t)(f(t; z1(t))� f(t; z2(t))) dtj dy ��MN Z 10 Z y0 e�ayjz1(t)� z2(t)j dt dy =MN Z 10 Z 1t e�ayjz1(t)� z2(t)j dy dt ==MN Z 10 e�at � e�aa jz1(t)� z2(t)j dt � MNa kz1 � z2ka:This shows that for a > MN the map~L : ~Xa ! ~Xais a ontration and so is ~T = v + ~L. It easily follows that ~T maps ~Xa into Xa, sothe unique �xed point belongs to C([0; 1℄), and is also the unique �xed point for T .1.3 Brouwer and Shauder �xed point theoremsWe start by formulating Brouwer �xed point theorem.Theorem 1.4 (Brouwer's �xed point theorem). Assume that K is a ompatonvex subset of Rn and that T : K ! K is a ontinuous mapping. Then T has a�xed point in K.Observe that it does not follow from Brouwer �xed point theorem that the �xedpoint is unique. Consider for instane the identity operator on a ompat onvexset K in Rn for whih every x 2 K is a �xed point.Example 1: Take a street map for Goteborg and plae it on the oor of the letureroom at Chalmers. Then there will be a point on the map that oinides withthe orresponding point in Goteborg. This follows from both Banah's �xed pointtheorem and Brouwer's �xed point theorem, where the former theorem also givesthat the point is unique. Prove this to yourself!Example 2: Let T� denote the rotation � degrees around the enter for a loseddis K of radius 1. Then Brouwer's �xed point theorem gives the existene of a�xed point for T� (of ourse it is overkill to use a �xed point theorem to see that)while Banah's �xed point theorem annot be applied diretly3 sine T� is not aontration. It is obvious that the enter is a �xed point but Brouwer's �xed pointtheorem also tells us that it is not possible to ompose the rotation with a ontinuous3Assume that the dis has its enter at the origin in Rn. Apply Banah's �xed point theoremto the operators Tn = (1� 1n )T; n = 1; 2; : : :. We obtain a sequene of �xed points xn to Tn suhthat kT (xn)� xnk � 1n; n = 1; 2; 3; : : : :The result follows from Theorem 1.1 above. 7



deformation of the dis into itself in suh a way that the omposed mapping has no�xed point.We note that� (generalization of Brouwer's �xed point theorem): If there exists a homeomor-phism, i.e. a ontinuous bijetion with ontinuous inverse, between a ompatonvex set K in Rn and a set ~K, all the homeomorphism ', and ~T : ~K ! ~Kis a ontinuous mapping then ~T has a �xed point. To see this onsider themapping T = '�1 Æ ~T Æ '.Exerise: Prove that ~T has a �xed point.� it is enough to prove Brouwer �xed point theorem in the ase4 K = B(0; 1).There are many proofs for Brouwer's �xed point theorem, both analytial, topolog-ial and ombinatorial. We just sketh one proof. Assume that K = B(0; 1) andthat T has no �xed point. De�ne the mapping A : B(0; 1)! B(0; 1) as follows: Forevery inner point x in B(0; 1) let ~x denote the point on the boundary �B(0; 1) thatis the intersetion of the ray from T (x) through x and the boundary �B(0; 1). Theray is always well-de�ned sine T has no �xed point. Now setA(x) = � ~x if x 2 B(0; 1)x if x 2 �B(0; 1)Then A is a ontinuous mapping from �B(0; 1) into �B(0; 1) (verify this!) suhthat Aj�B(0;1) = Ij�B(0;1). The problem to show that T has no �xed point is nowreformulated as to show that there is no ontinuous mapping A : B(0; 1)! �B(0; 1)suh that Aj�B(0;1) = Ij�B(0;1). The statement that there is no suh mapping is deepbut never the less intuitively obvious5. Consider, for n = 2, the ase with an elastimembrane �xed on a irular frame. The existene of a mapping A implies thatit should be possible to deform the membrane ontinuously in suh a way that itshould oinide with the frame without being fratured. For �xed x 2 B(0; 1) themapping t 7! (1� t)x + tA(x); t 2 [0; 1℄desribes how this point on the membrane is moved from x at t = 0 to A(x) 2�B(0; 1) at t = 1, under the deformation. Do not forget that the membrane shouldbe �xed at the frame!!!Another beautiful proof based on Sperner's lemma will be indiated in the Exerises[5℄.We present Perron's theorem as an appliation of Brouwer's �xed point theorem.Shauder's �xed point theorem will be applied in the ontext of nonlinear di�eren-tial/integral equations to prove the existene of solutions.4B(a; r) = fx 2 Rn : kx� ak < rg5Another suh result that appears to be obviously true but hard to prove is the Jordan urvetheorem. This theorem says that every simple (no self-intersetions) losed (the end points oinide)urve in the plane, i.e. every ontinuous injetive mapping  : S1 ! R2, deomposes the plane intwo onneted omponents. Here S1 denotes the set f(x; y) 2 R2 : k(x; y)k = 1g.8



Theorem 1.5 (Perron's theorem). Let A be a real n � n{matrix with positiveentries. Then there exists a positive eigenvalue for the linear mapping given by thematrix A, with an eigenvetor with positive entries6.In a �nite-dimensional normed spae ompatness is equivalent to losedness andboundedness. This is not the ase in an in�nite-dimensional normed spae. Thefollowing example due to Kakutani should be ompared to the next �xed pointtheorem due to Shauder.Example: Let B denote the losed unit ball in l2(Z), where l2(Z) onsists of allelements x = (: : : ; x�1; x0; x1 : : :) suh that kxk = (�1n=�1jxnj2) 12 < 1. It is learthat B is onvex and bounded. Let z be the element in l2(Z) that satis�es z0 = 1and zn = 0 for n 6= 0 and let S denote the shift operator de�ned by (S(x))n = xn�1for n 2 Z. Now set T : l2(Z)! l2(Z);where T (x) = S(x) + (1� kxk)z:We have kT (x)k � kS(x)k+ (1� kxk) = 1for x 2 B, i.e. T (x) 2 B. But T has no �xed point in B sine(T (x))n = xn�1; n 6= 0and (T (x))0 = x�1 + (1� kxk);whih implies that x0 = x1 = : : : = xn = : : : and x�1 = x�2 = : : : = x�n = : : :. Thisyields a ontradition sine x 2 l2(Z). Prove this to yourself!From this example we see that a generalization of Brouwer's �xed point theorem toin�nite-dimensional spaes should have the assumption that T (K) is a ompat set.We next formulate two versions of Shauder's �xed point theorem.Theorem 1.6 (Shauder's �xed point theorem). Assume that K is a onvexompat set in a Banah spae X and that T : K ! K is a ontinuous mapping.Then T has a �xed point.For appliations the following generalization proves to be useful.Theorem 1.7 (generalization of Shauder's �xed point theorem). Let F bea losed onvex set in a Banah spae X and assume that T : F ! F is a ontinuousmapping suh that T (F ) is a relatively ompat subset of F . Then T has a �xedpoint.6Hint: Let K denote the set f(x1; : : : ; xn) : xi � 0 all i; �ni=1xi = 1g and set T (x) =Ax=kAxkl1 for x 2 K. 9



We reall that a set K1 � X is ompat7 if every sequene in K1 has a onvergentsubsequene in K1. Moreover we say that K2 � X is relatively ompat if everysequene in K2 has a subsequene that onverges in X. The limit element of theonverging sequene belongs to K2. The set K2 being relatively ompat impliesthat K2 is a ompat set. Also an arbitrary subset of a ompat set is relativelyompat.To prove Shauder's �xed point theorem we will make use of some new onepts andfats for ompat sets. We say that the onvex hull of a set F is the set, denotedby oF , that is de�ned by \F�H;H onvexH:By a onvex ombination of the elements x1; x2; : : : ; xn we mean a linear ombination�ni=1�ixn, where all �i � 0 and �ni=1�i = 1. An �{net is a subset F� of F with theproperty that for eah x 2 F there exists a y 2 F� suh that kx� yk < �.Proposition 1.1. The following statements are true:1. A set F is relatively ompat i� for eah � > 0 there exists a �nite �{net.2. A set K is ompat i� it is losed and for every � > 0 there exists a �nite�{net.3. The set oF is the same as the set of all onvex ombination of �nitely manyelements in F .4. K ompat set implies that oK is ompat.The proof is left as an exerise.Proof. (of the Shauder theorems) The seond Shauder theorem is a onsequeneof the �rst one. To see this assume that the hypothesis of the seond theorem aresatis�ed. It then follows that the losed hull R of R = T (F ) is ompat and so alsooR. Set K = oR. We see that K � F sine F is losed and onvex. MoreoverT : K ! K is ontinuous. Hene the seond theorem follows from the �rst theorem.It remains to prove the �rst theorem. This will be done by approximating theompat set K by ompat sets Kn, n = 1; 2; : : : in �nite-dimensional spaes andapproximating the mapping T by ontinuous mappings Tn : Kn ! Kn, where theapproximation beomes better and better for larger n. Brouwer's �xed point theoremgives a sequene of points (xn) that are �xed points for the sequene (Tn), from whih7This de�nition of ompatness and relative ompatness is sometimes referred to as sequentialompatness and sequential relatively ompatness in the literature. The words ompatness andrelatively ompatness are then reserved to mean the following: A set K in a normed spae isalled ompat if for eah open over of K there is a �nite subover. An open over of K is aolletion of open sets O�, � 2 �, whose union ontains K as a subset. A �nite subover is a �nitesubset of fO�g�2� whose union also ontains the set K. It an be shown that for metri spaes Xthe notions sequentially ompat and ompat are equivalent.10



a onverging subsequene of points (xnk) an be extrated. The limit element of thissequene will be a �xed point for T .For every positive integer n we de�ne mappings Pn, alled Shauder projetions,as follows: The ompatness of K implies that there are �nitely many elementsx1; : : : ; xk 2 K suh that K � k[i=1B(xi; 1n):Set fi(x) = max(0; 1n � kx� xik); i = 1; : : : ; k:For every x 2 K there exists an i suh that fi(x) > 0. This implies that �ki=1fi(x) >0 for all x 2 K. Now set Kn = ofx1; : : : ; xkg andPn(x) = �ki=1fi(x)xi�ki=1fi(x) ; x 2 K:Finally we de�ne Tn = PnT jKn. We an now apply Brouwer's theorem to everymapping Tn : Kn ! Kn; n = 1; 2; : : :This yields a sequene of �xed points xn for Tn. We obtainPnT (xn) = xn;and hene we get kT (xn)� xnk < 1n:Shauder's theorem now follows from Theorem 1.1.1.4 Continuity and appliationsTo apply the �xed point theorems above some results for ontinuous funtions willoften be applied.Theorem 1.8. Assume that T is a ontinuous mapping between two Banah spaesX and Y . Then the following statements are true:1. If K is a ompat set in X then T (K) is a ompat set in Y .2. If Y = R then T attains its maximum and its minimum on every ompat setK in X, i.e. there are x0; x1 2 K suh thatsupx2K f(x) = T (x0) = maxx2K T (x)and infx2K T (x) = T (x1) = minx2K T (x):11



3. T is uniformly ontinuous on every ompat set in X.The di�erent notions of ontinuity that is and will be used are: Let T : X ! Y bea mapping between two Banah spaes. Then T is alledontinuous if for eah x 2 X and eah � > 0 there exists a Æ = Æ(x; �) > 0 suhthat for every y 2 Xky � xkX < Æ ) kT (y)� T (x)kY < �:uniformly ontinuous on A , where A � X, if for eah � > 0 there exists aÆ = Æ(�) > 0 suh that for every x; y 2 A we haveky � xkX < Æ ) kT (y)� T (x)kY < �:If T� : X ! Y , � 2 � is a set of mappings (�nitely many or in�nitely many) betweentwo Banah spaes then these are alledequiontinuous on A , where A � X, if for eah � > 0 there exists a Æ = Æ(�) > 0suh that for every pair of elements x; y 2 A and every � 2 � we haveky � xkX < Æ ) kT�(y)� T�(x)kY < �:Proof. (of Theorem 1.8) To prove statement 1) let T : X ! Y be a ontinuousmapping and K a ompat set in X. Pik an arbitrary sequene (yn) � T (K). Thenthere exists a sequene (xn) in K suh that T (xn) = yn for all n. The sequene (xn)might not be uniquely determined sine T is not assumed to be injetive. But sineK is a ompat set there exists a onvergent subsequene (xnk) of (xn) in K, i.e.there is an element x 2 K suh that xnk ! x as k ! 1. Moreover sine T isontinuous we have xnk ! x) ynk = T (xnk)! T (x) 2 T (K):This proves 1).The proof of statement 2) is left as an exerise.To prove statement 3) assume that K is a ompat set of X and that T : X ! Y isontinuous. Moreover assume that T is not uniformly ontinuous on K. Then thereexists an � > 0 suh that for all positive integers n there are points xn; yn 2 K suhthat kyn � xnkX < 1n (2)and kT (yn)� T (xn)kY � �: (3)But K is a ompat set and so there exists a onvergent subsequene (xnk) of (xn),i.e. for some x 2 K we have xnk ! x. From (2) it follows that ynk ! x sine wehave kynk � xkX � kynk � xnkkX + kxnk � xkX :12



Moreover T is ontinuous and so T (xnk)! T (x) and T (ynk)! T (x). This gives aontradition of (3). The statement 3) is proved.The Banah spaes that will be used in appliations are C(A) and Lp(A), 1 � p <1.Here A stands for di�erent subsets of Rn for n � 1. Of ourse the norms should bethe proper ones e.g. the sup-norm should be used for C(A). We taitly understandthat the proper norm is used unless something else is stated. In the ontext ofShauder's �xed point theorem it is important to be able to onlude whether ornot a subset of C(A) or Lp(A) is ompat. Our next result answers that questionfor the ase C(A).Theorem 1.9 (Arzela-Asoli theorem). Assume that K is a ompat set in Rn,n � 1 (e.g. K = [a; b℄ � R). Then a set S � C(K) is relatively ompat in C(K)i� the funtions in S are uniformly bounded and equiontinuous on K.To say that the funtions in S are uniformly bounded means that there exists aM > 0 suh that kfk = supx2K jf(x)j �M all f 2 S:To say that the funtions in S are equiontinuous on K means that for every � > 0there exists an Æ > 0 suh that for every x; y 2 K and every f 2 S we havejx� yj < Æ ) jf(x)� f(y)j < �:The Arzela-Asoli theorem an be generalized to the whole of Rn if we assume thatthe funtions uniformly tends to 0 at in�nity i.e. as jxj ! 1.Next we formulate a riteria for ompatness for sets of Lp-funtions.Theorem 1.10 (Riesz, Kolmogorov). Assume that 1 � p < 1 and that S �Lp(Rn). Then S is relatively ompat in Lp(Rn) i� the following onditions aresatis�ed:1. S is a bounded set in Lp(Rn), i.e. there exists a M > 0 suh that kfkLp �Mfor all f 2 S,2. limx!0 RRn jf(y+ x)� f(y)jp dy = 0 uniformly in S, i.e. for every � > 0 thereexists a Æ > 0 suh thatjxj < Æ oh f 2 S ) kf(�+ x)� f(�)k � (ZRn jf(y + x)� f(y)jp dy)1=p < �;3. limR!1 kfkLp(RnnB(0;R)) = (Rjxj>R jf(x)jp dx)1=p = 0 uniformly in S, i.e. forevery � > 0 there exists a ! > 0 suh thatR > ! oh f 2 S ) (Zjxj>R jf(x)jp dx)1=p < �:13



We are now ready to apply Shauder's theorem. In general, we note the di�erenein applying Shauder's theorem to applying Banah's theorem, namely to applyBanah's theorem we have to show that a mapping is suÆiently small, while toapply Shauder's theorem we have to prove that a mapping is ompat. This meansthat, in the C(A) or Lp ase, we have to show that the image set for the mappingonsists of more \regular" funtions.Example (an integral equation of Hammerstein-type): Assume that K(x; y)is a ontinuous funtion for 0 � x; y � 1 and that f(y; z) is a bounded ontinuousfuntion for 0 � y � 1 and z 2 R. Then the equationz(x) = Z 10 K(x; y)f(y; z(y)) dyhas a ontinuous solution z(x).We want to prove that T (z), z 2 C([0; 1℄), has a �xed point where (T (z))(x) =R 10 K(x; y)f(y; z(y)) dy: To show this we will apply the generalization of Shauder's�xed point theorem. We will hoose a losed onvex subset S � C([0; 1℄) suh thatthe mapping T : S ! C([0; 1℄) is ontinuous and the image set T (S) is relativelyompat in C([0; 1℄).First we observe that T maps ontinuous funtions to ontinuous funtions, i.e. thatwe have T (C([0; 1℄)) � C([0; 1℄):This an be seen as follows: From the hypothesis there exists a B > 0 suh thatjf(y; z)j � B if (y; z) 2 [0; 1℄�R:Moreover K(x; y) is ontinuous on the ompat set [0; 1℄ � [0; 1℄ and hene K isuniformly ontinuous on [0; 1℄� [0; 1℄. Fix an � > 0. Then there exists a Æ > 0 suhthat jK(x; y)�K(~x; ~y)j < �B if j(x; y)� (~x; ~y)j < Æ:Consequently for arbitrary z 2 C([0; 1℄) we havej(T (z))(x)� (T (z))(~x)j = j Z 10 (K(x; y)�K(~x; y))f(y; z(y)) dyj �� Z 10 jK(x; y)�K(~x; y)jjf(y; z(y))j dy � B Z 10 jK(x; y)�K(~x; y)j dy < �provided jx� ~xj < Æ. This means that T (z) 2 C([0; 1℄).A natural hoie for the losed onvex set S is as follows:S = fu 2 C([0; 1℄) : kuk � Dg;where D > 0 is a onstant that should be hosen suh that T (S) � S. We note thatsine K is ontinuous on the ompat set [0; 1℄ � [0; 1℄ there exists an A > 0 suhthat jK(x; y)j � A if (x; y) 2 [0; 1℄� [0; 1℄:14



This implies thatj(T (z))(x)j = j Z 10 K(x; y)f(y; z(y)) dyj � Z 10 jK(x; y)jjf(y; z(y))j dy � AB:We get kT (z)k � Dprovided we hoose D � AB. For instane set D = AB. With this hoie for S weget T (S) � S:To apply Shauder's theorem we have to show that T (S) is relatively ompat inC([0; 1℄) and that T is ontinuous on S. The relatively ompatness is onsequeneof Arzela-Asoli theorem one we have shown that T (S) is uniformly bounded andequiontinuous on S.We have above veri�ed that T (C([0; 1℄)) is uniformly bounded and equiontinuouson S. It remains to prove that T : S ! T (S) is ontinuous. From the de�nition of Sit follows that jz(x)j � D for all x 2 [0; 1℄. The ontinuity of f(y; z) on the ompatset [0; 1℄� [�D;D℄ implies that f is uniformly ontinuous on [0; 1℄� [�D;D℄. Fixan arbitrary � > 0. Then there exists a Æ > 0 suh thatjf(y; z)� f(~y; ~z)j < �A if j(y; z)� (~y; ~z)j < Æ:Hene for arbitrary z1; z2 2 S we havekT (z1)� T (z2)k = supx2[0;1℄ j Z 10 K(x; y)(f(y; z1(y))� f(y; z2(y))) dyj �� supx2[0;1℄Z 10 jK(x; y)jj(f(y; z1(y))� f(y; z2(y)))j dy �� A Z 10 j(f(y; z1(y))� f(y; z2(y)))j dy < �:Now we have shown that T is ontinuous on S. Shauder's �xed point theoremimplies that the equation z = T (z) has at least one solution.1.5 Some more �xed point theoremsWe onlude the note with some additional �xed point theorems. The �rst one,Shaefer's �xed point theorem, is a version of Shauder's theorem. Sometimes it isalled the Leray-Shauder priniple and is an example of the mathematial priniplesaying "apriori estimates implies existene". The seond one, Krasnoselskii's �xedpoint theorem, is a mix of Banah's and Shauder's �xed point theorems.Theorem 1.11 (Shaefer's �xed point theorem). Assume that X is a Banahspae and that T : X ! X is a ontinuous ompat8 mapping. Moreover assume8T is a ompat mapping if (T (xn))1n=1 has a onvergent subsequene for every bounded se-quene (xn)1n=1 in X . Usually by a ompat (or ompletely ontinuous) mapping one means aontinuous mapping with the property above. For linear mappings the ontinuity follows from thisproperty but it is not true in general for nonlinear mappings.15



that the set [0���1fx 2 X : x = �T (x)gis bounded. Then T has a �xed point.Proof. Assume that the mapping T satis�es the hypothesis in the theorem. Pik aR > 0 suh that x = �T (x) and 0 � � � 1implies that kxk < R:De�ne the mapping ~T : X ! X as follows:~T (x) = 8<: T (x); if kT (x)k � RRkT (x)kT (x) if kT (x)k > RThis implies that ~T : X ! X is a ompat operator. To show this take abounded sequene (xn)1n=1 in X. Then there exists a subsequene (xnk)1k=1 suhthat kT (xnk)k < R for all k or kT (xnk)k � R for all k. In the �rst ase ( ~T (xnk))1k=1has a onvergent subsequene sine ~T (xnk) = T (xnk) and T is a ompat mapping.In the seond ase we get that (T (xnk))1k=1 has a onvergent subsequene, denote itby (T (xl))1l=1 for onveniene. But then it follows that also (kT (xl)k)1l=1 onverges,where also kT (xl)k � R for all l. Hene we obtain ~T (xl) = RkT (xl)kT (xl).Set K = o ~T (B(0; R)):Here K is onvex (it is the onvex hull of a set), ompat (the onvex hull of aompat set is ompat and ~T is a ompat mapping) subset of X suh that~T : K ! K:Shauder's �xed point theorem implies that ~T has a �xed point x0 2 K. But x0is a �xed point for T if kT (x0)k � R. Assume that kT (x0)k > R. This yields aontradition sine x0 = ~T (x0) = �T (x0), where � = RkT (x0)k 2 (0; 1), sine aordingto the hypothesis of the theorem it should follow that kT (x0)k = kx0k < R. Thisproves the theorem.In partiular, note that to apply Shaefer's theorem we do not need to prove that aertain set is onvex or ompat. The problem is reformulated as to show ertain apriori estimates for the operator T .Theorem 1.12 (Krasnoselskii's �xed point theorem). Assume that F is alosed bounded onvex subset of a Banah spae X. Furthermore assume that T1and T2 are mappings from F into X suh that1. T1(x) + T2(y) 2 F for all x; y 2 F ,16



2. T1 is a ontration,3. T2 is ontinuous and ompat.Then T1 + T2 has a �xed point in F .Proof. Assume that the mappings T1; T2 satis�es the hypothesis of the theorem. Inpartiular there exists a  2 (0; 1) suh thatkT1(x)� T1(y)k � kx� yk; x; y 2 F:This yieldsk(I � T1)(x)� (I � T1)(z)k � kx� zk � kT1(x)� T1(z)k � (1� )kx� zkand k(I � T1)(x)� (I � T1)(z)k � kx� zk + kT1(x)� T1(z)k � (1 + )kx� zk:Consequently I � T1 : F ! (I � T1)(F ) is a homeomorphism, and (I � T1)�1 existsas a ontinuous mapping from (I�T1)(F ). Furthermore we note that for eah y 2 Fthe equation x = T1(x) + T2(y)has a unique solution x 2 F aording to Banah's �xed point theorem. From this weonlude that T2(y) 2 (I�T1)(F ) for every y 2 F and also that (I�T1)�1T2 : F ! Fis a well-de�ned ontinuous mapping. Sine T2 is a ompat mapping it follows that(I�T1)�1T2 : F ! F is a ompat mapping. Finally the generalization of Shauder's�xed point theorem yields the onlusion of the theorem.We onlude the note by reommending anyone interested in �xed point theoremsto browse through the book [6℄ by Smart where additional results and many morereferenes an be found.Referenes[1℄ L.Debnath/P.Mikusinski, Introdution to Hilbert Spaes with Appliations 2nded., Aademi Press 1999[2℄ A.Friedman, Foundations of modern analysis, Holt Rinehart and Winston, 1970[3℄ E.Kreyszig, Introdution to funtional analysis with appliations, Wiley 1989[4℄ P.Kumlin, A note on Spetral Theory, Mathematis, Chalmers & GU 2004/2005[5℄ P.Kumlin, Exerises, Mathematis, Chalmers & GU 2004/2005[6℄ D.R.Smart, Fixed Point Theorems, Cambridge Univ. Press 197317


