

17th April 2005

TMA401 Functional Analysis MAN670 Applied Functional Analysis 4th quarter 2004/2005

All document concerning the course can be found on the course home page: http://www.math.chalmers.se/Math/Grundutb/CTH/tma401/

Home Assignment 1

- **Problem 1:** Let X be a vector space and let ||x|| and $||x||_*$, $x \in X$, be two norms on X. Is $\max(||x||, ||x||_*)$ a norm on X? Is $\min(||x||, ||x||_*)$ a norm on X?
- **Problem 2:** Consider the vector space l^1 and set $\|\mathbf{x}\|_* = 2|\sum_{n=1}^{\infty} x_n| + \sum_{n=2}^{\infty} (1 + \frac{1}{n})|x_n|$ for $\mathbf{x} = (x_1, x_2, \ldots, x_n, \ldots) \in l^1$. Show that $\|\mathbf{x}\|_*$ defines a norm on l^1 and that the vector space l^1 is a Banach space with this norm. Is this norm equivalent to the standard norm $\|\mathbf{x}\|_{l^1}$?
- **Problem 3:** Let T be defined by $T(\mathbf{x}) = (x_2, x_3, \dots, x_{n+1}, \dots)$ for all $\mathbf{x} = (x_1, x_2, \dots, x_n, \dots) \in l^2$. Show that $T \in \mathcal{B}(l^2, l^2)$ and calculate ||T||.
- **Problem 4:** Let X be a Banach space and let T, S be two mappings from X into X (not necessarily linear). Assume that TS = ST and that T has a unique fixed point. Show that S has a fixed point. What can be said if T has more than one fixed point?

Problem 5: Let F be a compact set in a normed space X and let $T: F \to F$ have the property

 $||T(x) - T(y)|| < ||x - y||, \text{ all } x \neq y \in F.$

Show that T has a unique fixed point.

Problem 6: Let X be a Banach space and T a mapping on X satisfying

 $||T(x) - T(y)|| \ge K ||x - y||$ all $x, y \in X$,

where K > 1. Assume that T(X) = X. Show that T has a unique fixed point.

The solutions should be handed in at the latest on Friday April 29.