GÖTEBORGS UNIVERSITET CHALMERS

8th May 2005

TMA401 Functional Analysis **MAN670** Applied Functional Analysis 4th quarter 2004/2005

All document concerning the course can be found on the course home page: http://www.math.chalmers.se/Math/Grundutb/CTH/tma401/

Home Assignment 2

Problem 1: Let x_1, x_2, \ldots, x_N be linearly independent vectors in an inner product space, with $N = \begin{pmatrix} n+1\\ 2 \end{pmatrix}$. Show that there are orthonormal vectors y_1, y_2, \ldots, y_n such that

$$y_i = \sum_{j \in A_i} \lambda_j x_j, \ i = 1, 2, \dots, n,$$

where A_1, A_2, \ldots, A_n are disjoint subsets of $\{1, 2, \ldots, N\}$.

Problem 2: Let X be a separable Hilbert space. Show that the closure in $\mathcal{B}(X, X)$ of the vector space of all finite dimensional operators is equal to $\mathcal{K}(X, X)$.

Problem 3: Let a_n , n = 1, 2, 3, ... be non-negative reals and set

$$C = \{ \mathbf{x} \in l^2 : \mathbf{x} = (x_n)_{n=1}^{\infty}, |x_n| \le a_n \text{ all } n \}.$$

Show that if C is a compact subset in l^2 then $a_n \to 0$ as $n \to \infty$. For what sequences $(a_n)_{n=1}^{\infty}$ is C compact?

- **Problem 4:** Let T be defined on $L^2([0,1])$ by $Tf(x) = \int_0^x f(y) dy$. Show that T is a compact operator on $L^2([0,1])$ with $\sigma(T) = \{0\}$. In particular prove that T has no eigenvalues $\neq 0$.
- **Problem 5:** Let f(x) be a complex-valued function on $\mathbb{R}_+ = \{x : x > 0\}$ and let Lf be the function defined on \mathbb{R}_+ by

$$Lf(x) = \int_0^\infty f(y)e^{-xy}\,dy$$

Show that L is a bounded linear mapping $L^2(\mathbb{R}_+) \to L^2(\mathbb{R}_+)$ with $||L|| \leq \sqrt{\pi}$. Show that L is not a bounded² linear mapping $L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+)$ for $p \neq 2$.

Problem 6: Prove the existence and uniqueness of a solution to the following boundary value problem:

$$\begin{cases} 4u''(x) = |x + u(x)|, & 0 \le x \le 1\\ u(0) - 2u(1) = u'(0) - 2u'(1) = 0, & u \in C^2([0, 1]). \end{cases}$$

The solutions should be handed in at the latest on Friday May 20.

¹Hint: write $f(y)e^{-yx} = (f(y)e^{-yx/2}y^{1/4})(e^{-yx/2}y^{-1/4})$ and use Hölder's inequality. ²Hint: Try $f(x) = e^{-ax}$