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1 A Note on Ordinary Differential Equations

1.1 Introduction

Let cg,...,c, € C(I) be fixed, where I = [a,b], n > 2 and
cn(x) #0, forallx € 1.

Set
Lu = cu™ + ..+ cou, u € c™(1).

The aim of this note is to show that the differential operator I with proper ho-
mogeneous boundary conditions has a so called Green’s function. This means that
solution can be written as an integral with the Green’s function appearing as the
kernel function. Moreover we show that provided the operator L is symmetric the
solution has a spectral decomposition. This follows from the spectral theorem for

compact self-adjoint operators on Hilbert spaces ([1] Theorem 4.10.2).

1.2 Existence of Green’s functions

Our first result is the following fundamental existence theorem for ordinary differ-

ential equations.

Theorem 1.1. Assume ty € I and & = (&,...,&,) € C". Then for every f € C(
there exists a unique u € C™(I) such that Lu = f and (u(ty),u'(ty), ..., u™ (L))

€.

Proof. Set y1 =u, yo =, ..., y, = u® . The equation Lu = f is equivalent to

( Yi = Yo
o
ynfl — yn
L V==L~ =y L f
or, using the vector notation y = (y1,...,Yn),

y =F(ty),tel
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for a vector-valued function F'. This function satisfies a so called Lipschitz condition
F(t,y) — F(t,2)| < Kly—z|, teI,y,z € R",

for some K € R. Moreover note that the condition (u(ty), u'(to), ..., u" D (ty)) = ¢
can be written y(ty) = £. Picard’s existence theorem ([1] theorem 5.2.5) in vector
form yields the result. O

We introduce the notation
N(L) = {ue C"(I); Lu = 0}.
Clearly N (L) is a subspace of C™(I) since L is a linear operator.

Corollary 1.1. dim N (L) = n.

Proof. Let ty € I be fixed and define
Tu = (u(ty),...,u™ V(t)), ue N(L).

The linear mapping 7' : N(L) — C" is a bijection from the previous theorem with

the range C". Hence we get dim N (L) = dim C" = n. O
For arbitrary functions wuy, ..., u, € N (L) we define the Wronskian for u,, ..., u,
by
uq (t) us(t) Un (t)
ui(t) oyt Uy, (1)
wiy= ? S ter
AV WY () u (1)

Theorem 1.2. The following conditions are equivalent:

1. W(t) #0 forallt € 1.
2. W(ty) # 0 for some ty € I.

3. Ui, ..., uy, s a basis for the vector space N'(L).

Proof. (1) = (2): trivial.

(2) = (3): Take an u € N (L). Since dim N (L) = n it is enough to show that u is
a linear combination of uy, ..., u,.

Assume that ¢y € I is fixed and that W (ty) # 0. Let u € N'(L). From courses in
linear algebra we know that there exist oy, ..., a, € C" such that

> an(un(to), - ul Vta) = (ulto), ..., ul" (k).



The function v = Y] aguy, € N (L) satisfies the relation

(v(to), ..., 0™ V(L)) = (u(ty), ..., u V(ty))
and by Theorem 1.1 we have v = u. Hence it follows that u € span {uy, ..., u,}.

(3) = (1): Let t € I be arbitrary. We will show that W (¢) # 0. It is enough to
show that the columns in the determinant W (t) are linearly independent.

Assume that aq,...,a, € C" and that

> o (ue(t). ... ufV(t) =0,
k=1

The function v = Y7 ayup € N(L) satisfies v(t) = ... = v(® U (¢) = 0 and is
equal to the zero function by Theorem 1.1. However from )| ajuy = 0 it follows
that a; = ... = o, = 0. Hence the columns in the determinant W (¢) are linearly
independent. O

From now on we use the following notation:
aij,@;j,z:ﬂ,...,n—l,] = 1,...,7’1,

are complex numbers and

n—1

Rju = Z[alju(i)(a) + B u ()], j =1,...,n.

i=0
are boundary operators. Moreover we set

Ru = (Ryu,...,R,u)

Crp(I)={ue C"(I): Ru=0}

and
Lou = Lu, u € CL(I).

Theorem 1.3. The following conditions are equivalent:

1. The mapping Lo : CR(I) — C(I) is a bijection.

2. det{Rjur}1<jr<n # 0 for every (alternatively for some) basis uy,..., u, i
N(L).
Proof. (1) = (2): If the determinant in (2) is zero then there are «ay,...,a, € C

not all equal to zero such that

n
ZakRjuk :0, 7 = 1,...,7’1,.
k=1



The function v = 7 ayuy satisfies Lv = 0 together with Rv = 0. This yields a
contradiction since v # 0 and Lgyv = 0.

(2) = (1): Take an arbitrary f € C(I). It remains to prove that the equation
Lu=f
Ru=0

is uniquely solvable. Set w = u — v, where v € C"(I) satisfies Lv = f (Theorem
1.1), we obtain the equivalent equation

Lw =20

Rw = —Ruw.
With the ansatz w = Y ajuy, the determinant condition in (2) gives the existence
of a unique solution. O
Now let uy, ..., u, be a basis for the vector space N (L) and set

n
e(zr,t) = Z ag(t)ug ()
k=1

where a;(t),...,a,(t) are chosen such that

et t)=0k=0,1,...,n—2
e (1) = 1/ea(t).

Note that the functions a,(%),...,a,(f) are continuous in ¢ due to Cramer’s rule.
Also observe that for fixed ¢ € I the function u(z) = e(x,t) is the unique solution
to the equation

Lu=20
u(t) = ... =u™ () =0, u V() = 1/c,(t),

The function e(z,t), (z,t) € I x I, is called the fundamental solution to the
operator L. This function is of interest in connection with boundary value problems
that we will discuss next.

Theorem 1.4. Let uy,...,u, be a basis for N (L) such that

det{ R;ur}i<jr<n # 0

and set G = L,*. Then there exists a unique continuous function g(z,t), (z,t) €
I x I, such that

(G)(x) = / oo 1) F (1)t

Jr1
This is called the Green’s function g and can be constructed as follows:

1. Set é(x,t) = O0(x — t)e(x,t), where 0 is the Heaviside’s function

4



2. Determine by, ..., b, € C(I) such that the function

glw,t) =é(x,t) + > bi(t)ug(w)

satisfies
R(g(-,t)) =0, a <t <b.

Proof. First set
ie.

Repeated differentiations yield

'(z) = / el (x, ) f(t)dt + e(x, x) f(x)
=0

o) = [ s+ o) S

W) = [ e O+ D e 5) f(0)

and

™ (z) = / e™ (x, ) f(t)dt +
Ja C

From this we conclude Lu = f. The function

wmz/wmvmw

I

satisfies the equation Lu = f since

and the proof is completed.



The function g in Theorem 1.4 is called the Green’s function for the boundary

value problem
Lu=f
Ru = 0.

Problem 1: Determine the Green’s function for the boundary value problem

{ —((1+2)d(x)) = f(z),0<z <1
u'(0) =0, u(l) = 0.

Solution: The functions u;(z) = 1 and wuy(x) = In(1 4+ z) form a basis for the
solutions to the homogeneous equation —((1 + z)u'(z))" = 0. Note that

uy(0) up(0) | |0 1
11 In2 =-1#0.

so there exists a Green’s function. The fundamental solution e(x,t) = a;(t)ui(x) +
as(t)us(x) is given by
e(x,t) = ai(t) + az(t) In(1 4+ x)

and the constraints e(t,t) = 0, el.(t,1) = —lit easily yield

e(x,t) =In(l+t) — In(1 + z).
The Green’s function takes the form
g(z,t) =0(x — t)(In(1 +¢) — In(1 + 2)) + by (t) + ba(t) In(1 + 2)

where

for 0 <t < 1. Hence we get

by(t) =0
{ In(1+1¢) —In24+b(t) +by(t)In2 =0

from which we obtain

b](t):hll f,bg(t)—o
This finally gives
1+1 2
t)=0(x—1)1 1 )

Problem 2: Assume that A € C and f € C([0,1]). Show that the equation

{ u"(z) + u'(x) + Mu(z)| = f(z), 0 <z <1
u(0) = u(

has a unique solution for || < e(e —1).



Solution: We first determine the Green’s function for the equation
u'+u =F(z),0<z<1
u(0) = u(1) = 0.

The functions u;(z) = 1 and uy(z) = e * form a basis for the solutions to the
homogeneous equation u” + v’ = 0. With our standard notation we get

e(z,t) =1—¢""

and . .
el—e e—é
t)=0(x—t)(1—e"" -
oa.t) = 0a — )1 — )+ S O
Note that
el —e .
t>x= g(x,t)= 1(l—e")g()
6_
and
et —1 1—2
t<xz=g(z,t)= (1—e")<0

which implies g < 0.
For every u € C([0,1]) define

(Tu)(x) = /0 g(, )(f(t) = Alu(®)])dt, 0 <z <1
and observe that T maps C([0,1]) into {u € C?%([0,1]); u(0) = u(1) = 0}. The

equation in problem 2 has therefore a unique solution iff 7" has a unique fixed point.
For u,v € C([0,1]) it holds that

(Tu)(z) = (T) (=) = /0 gz, )(No(®)] = Au(t)])dt] <

1
< [A] / (g, N @] — lu@)lldt < (A7) lv — vl
J0

where || || denotes the max-norm for C([0, 1]) and

1
ja) == [ gt 0yt
0

Since j(0) = j(1) = 0 and j” + j' = —1 it follows that

e e -
7(x)_e—l_x_e— ‘
and
maxj:j(ln ¢ >: 1 +ln<1—1><
[0,1] ° ' e—1 e—1 e) —
1 1 1

< .
“e—1 e ele—1)
We conclude that \
Ty — Tv||s < A lu — v||s

e(e — 1)

and Banach’s fixed point theorem ([2]) implies that T has a unique fixed point for
Al < e(e—1).




1.3 Spectral theory for ordinary differential equations
The linear mapping Ly : CR(I) — C(I) is called symmetric if
(Lou,v) = (u, Lov), all u,v € CH(I),

where the inner product is given by the inner product in L*(T)

b
(f.hy = / @) @)
Provided that Lg is a bijection and g is the Green’s function for the boundary value

problem
Lu
Ru

(Gmm—/gumﬂmmfemn

3

f
0

we define

and

wﬁur—/guwﬂwﬁJeL%n

Theorem 1.5. Assume that Lg is a bijection. Then the following conditions are
equivalent:

1. Ly is symmetric

2. G is self-adjoint

3. gz, t) =g(t,z), x,t € I.

Proof. (1) & (2): Lo is symmetric iff
<L0Gfa Gh) = <Gfa LUGh>a fa h € C(I)
which is the same as
(f,Gh) =(G[.h), f,h € C(I).

This is equivalent to

(f.Gh)y = (Gf,h), f.h e L*(I)

since C'(1) is dense in L?(I) and G is a bounded linear operator on L2(I) ([1] example
4.2.4) whose restriction to C'(1) is equal to G. Lo being symmetric is thus equivalent
to GG being self-adjoint.

(2) < (3): We first observe that

@vmwzfgmwﬂwu
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([1] example 4.4.3). This implies that G = G* iff

/Xmﬂw—ﬁmx»NWﬁszeL%n

Since g is continuous this means that g(z,t) — g(¢,2) = 0 for all z,¢ € I and so
g(x,t) = g(t,x) for all x,t € I. O

Example 1: Consider the boundary value problem

= f(a)
{ u(0) =u(1)=0,0

IN

r < 1.

This means that Lu = —u”, Rju = u(0) and Ryu = u(1). The operator L is
symmetric since

1 1
_ 1 -
(Lou,v) = / —u"vdr = [ —u'v] + / u'v'de = {Ru =0} =
0 0

= (u', 0"y = (v, u') = (Lov, u) = (u, Lyv)

for all u,v € C%([0,1]). This fact also follows from Theorem 1.5 by checking that
Ly is a bijection and that the Green’s function is given by

(2,1) = t(l—x), 0<t<z<1
REUV=V 10—, 0<a<t<l,

It easily follows that ¢g(z,t) = g(¢,z). The details are left as an exercise.

Theorem 1.6. Assume that Ly is symmetric and is a bijection. Then the following
statements are true:

1. 0 is not an eigenvalue for Ly nor for G.

2. [ 1is an eigenfunction for Lo corresponding to the eigenvalue p iff f is an
eigenvalue for G corresponding to the eigenvalue 1/p.

Proof. (1): N(Lg) = {0} implies that Ly has no eigenfunction corresponding to an
eigenvalue zero.

Now assume that f € N(G’) We will show that f = 0. For this take an arbitrary
¢ € CL(I). We obtain

0=(0, Lyp) = <éf; Log) = (f, éLU¢> =

Since C%(I) is dense in L*(I) we can conclude that f = 0.
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(2): =) From )
07 f=G(Lf) =G(uf) = nGf = pGf
it follows that f is an eigenfunction to G corresponding to the eigenvalue 1/p.

<) We have

b
/ g(z,t)f(t)dt = %f(x) a.e. in [I.
Setting '

b
h(z) = u / gz, t)f(t)dt, z € 1

it follows from Lebesgue’s dominated convergence theorem (see [3]) that h € C(I).
Moreover we have h(z) = f(z) a.e. in I and

h(z) = M/ o(z, h(t)dt, z € T,

and hence we get Gh = ih. This yields

1 1
Iz Jz

Since h # 0 in C}k(I), h is an eigenfunction to L, corresponding to the eigenvalue
p. Thus h, which is equal to f in L?*(I), is an eigenfunction to Ly corresponding to
the eigenvalue p. This is the proper interpretation of the formulation in Theorem
1.6 2) and the proof of the theorem is complete. O

Theorem 1.7. Assume that Ly is symmetric and is a bijection. Moreover let (fi,,)5°
denote the eigenvalues for Lo counted with multiplicity and assume that (e,)3° is a
corresponding sequence of orthonormal eigenfunctions. Then (e,)}° is an ON-basis
for L?(I) and the solution to the equation

where f € C(I), is given by

u=3" " (f.een (in IA(D)).

Hn

Proof. The operator G is compact ([1] example 4.8.4) and the Hilbert-Schmidt the-
orem ([1] theorem 4.10.1) and Theorem 1.6 1) implies that (e,)7° is a complete
ON-sequence for L*(I). From

F=Y (fene

in L?(I), Theorem 1.6 2) now implies that

o

u=Gf=Gf =) (f e)Ge, = Zui fren)e
1 n

1
in L2(I). 0
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Example 2: Consider the boundary value problem

{ —u" = f(x)
u(0) = u(1)

0,0<x < 1.

Example 1 shows that the corresponding operator L is symmetric and is a bijection.
The eigenfunctions for L, are obtained as the non-trivial solutions to the equation

and a simple calculation gives e,(x) = Asinnrz, where A # 0 and n = 1,2,....
The sequence (v/2sinnmz)$C is therefore an ON-basis for L2([0, 1]).

Example 3: Wirtinger’s inequality states that

1 1
/0 |u'(3:)2d3:27r2/0 u(z) 2ds

for all uw € C''([0,1]) that satisfies u(0) = u(1) = 0. To show this we first let
u(z) = Zanﬂsin nrz  (in L?([0,1]))
1

where

1
a,n—/ u(x)V2sin nrxdz.
Jo

Furthermore we have

1 1
/ ' (£)V2 cos nrxdr = {u(z)\/ﬁ cosnmz| +
Jo

0

1
+ n7r/ u(z)V2sin nrxdr = nway,
0

and using the fact that the sequence (v/2cosnmz)® is an ON sequence, Bessel’s
inequality ([1] theorem 3.7.2) yields the estimate

1 oo
/ ' (z)|*dx > ZnQWQ\anF
0 1
where the RHS is greater than or equal to

oo 1
w3 Janf = [ jule)d.
1 J0

This gives one proof for Wirtinger’s inequality.
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