
TMA 401/MAN 670 Funtional Analysis 2004/2005Peter KumlinMathematisChalmers & GU1 A Note on Ordinary Di�erential Equations1.1 IntrodutionLet 0; : : : ; n 2 C(I) be �xed, where I = [a; b℄; n � 2 andn(x) 6= 0; for all x 2 I:Set Lu = nu(n) + : : :+ 0u; u 2 Cn(I):The aim of this note is to show that the di�erential operator L with proper ho-mogeneous boundary onditions has a so alled Green's funtion. This means thatsolution an be written as an integral with the Green's funtion appearing as thekernel funtion. Moreover we show that provided the operator L is symmetri thesolution has a spetral deomposition. This follows from the spetral theorem forompat self-adjoint operators on Hilbert spaes ([1℄ Theorem 4.10.2).1.2 Existene of Green's funtionsOur �rst result is the following fundamental existene theorem for ordinary di�er-ential equations.Theorem 1.1. Assume t0 2 I and � = (�1; : : : ; �n) 2 Cn. Then for every f 2 C(I)there exists a unique u 2 Cn(I) suh that Lu = f and (u(t0); u0(t0); : : : ; u(n�1)(t0)) =�.Proof. Set y1 = u; y2 = u0; : : : ; yn = u(n�1). The equation Lu = f is equivalent to8>>>>><>>>>>: y01 = y2...y0n�1 = yny0n = � 0ny1 � : : :� n�1n yn + 1nfor, using the vetor notation y = (y1; : : : ; yn),y0 = F (t; y); t 2 I1



for a vetor-valued funtion F . This funtion satis�es a so alled Lipshitz onditionjF (t; y)� F (t; z)j � Kjy � zj; t 2 I; y; z 2 Rn;for some K 2 R. Moreover note that the ondition (u(t0); u0(t0); : : : ; u(n�1)(t0)) = �an be written y(t0) = �. Piard's existene theorem ([1℄ theorem 5.2.5) in vetorform yields the result.We introdue the notationN (L) = fu 2 Cn(I);Lu = 0g:Clearly N (L) is a subspae of Cn(I) sine L is a linear operator.Corollary 1.1. dimN (L) = n.Proof. Let t0 2 I be �xed and de�neTu = (u(t0); : : : ; u(n�1)(t0)); u 2 N (L):The linear mapping T : N (L) ! Cn is a bijetion from the previous theorem withthe range Cn. Hene we get dimN (L) = dimCn = n.For arbitrary funtions u1; : : : ; un 2 N (L) we de�ne the Wronskian for u1; : : : ; unby W (t) = ��������� u1(t) u2(t) : : : un(t)u01(t) u02(t) u0n(t)... ... ...u(n�1)1 (t) u(n�1)2 (t) u(n�1)n (t)
��������� ; t 2 I:Theorem 1.2. The following onditions are equivalent:1. W (t) 6= 0 for all t 2 I.2. W (t0) 6= 0 for some t0 2 I.3. u1; : : : ; un is a basis for the vetor spae N (L).Proof. (1) ) (2): trivial.(2) ) (3): Take an u 2 N (L). Sine dimN (L) = n it is enough to show that u isa linear ombination of u1; : : : ; un.Assume that t0 2 I is �xed and that W (t0) 6= 0. Let u 2 N (L). From ourses inlinear algebra we know that there exist �1; : : : ; �n 2 Cn suh thatnXk=1 �k(uk(t0); : : : ; u(n�1)k (t0)) = (u(t0); : : : ; u(n�1)(t0)):2



The funtion v =Pn1 �kuk 2 N (L) satis�es the relation(v(t0); : : : ; v(n�1)(t0)) = (u(t0); : : : ; u(n�1)(t0))and by Theorem 1.1 we have v = u. Hene it follows that u 2 span fu1; : : : ; ung.(3) ) (1): Let t 2 I be arbitrary. We will show that W (t) 6= 0. It is enough toshow that the olumns in the determinant W (t) are linearly independent.Assume that �1; : : : ; �n 2 Cn and thatnXk=1 �k(uk(t); : : : ; u(n�1)k (t)) = 0:The funtion v = Pn1 �kuk 2 N (L) satis�es v(t) = : : : = v(n�1)(t) = 0 and isequal to the zero funtion by Theorem 1.1. However from Pn1 �kuk = 0 it followsthat �1 = : : : = �n = 0. Hene the olumns in the determinant W (t) are linearlyindependent.From now on we use the following notation:�ij; �ij; i = 0; : : : ; n� 1; j = 1; : : : ; nare omplex numbers andRju = n�1Xi=0 [�iju(i)(a) + �iju(i)(b)℄; j = 1; : : : ; n:are boundary operators. Moreover we setRu = (R1u; : : : ; Rnu)CnR(I) = fu 2 Cn(I) : Ru = 0gand L0u = Lu; u 2 CnR(I):Theorem 1.3. The following onditions are equivalent:1. The mapping L0 : CnR(I)! C(I) is a bijetion.2. detfRjukg1�j;k�n 6= 0 for every (alternatively for some) basis u1; : : : ; un iN (L).Proof. (1) ) (2): If the determinant in (2) is zero then there are �1; : : : ; �n 2 Cnot all equal to zero suh thatnXk=1 �kRjuk = 0; j = 1; : : : ; n:3



The funtion v = Pn1 �kuk satis�es Lv = 0 together with Rv = 0. This yields aontradition sine v 6= 0 and L0v = 0.(2) ) (1): Take an arbitrary f 2 C(I). It remains to prove that the equation� Lu = fRu = 0is uniquely solvable. Set w = u � v, where v 2 Cn(I) satis�es Lv = f (Theorem1.1), we obtain the equivalent equation� Lw = 0Rw = �Rv:With the ansatz w =Pn1 �kuk the determinant ondition in (2) gives the existeneof a unique solution.Now let u1; : : : ; un be a basis for the vetor spae N (L) and sete(x; t) = nXk=1 ak(t)uk(x)where a1(t); : : : ; an(t) are hosen suh that( e(k)x (t; t) = 0; k = 0; 1; : : : ; n� 2e(n�1)x (t; t) = 1=n(t):Note that the funtions a1(t); : : : ; an(t) are ontinuous in t due to Cramer's rule.Also observe that for �xed t 2 I the funtion u(x) = e(x; t) is the unique solutionto the equation � Lu = 0u(t) = : : : = u(n�2)(t) = 0; u(n�1)(t) = 1=n(t):The funtion e(x; t); (x; t) 2 I � I, is alled the fundamental solution to theoperator L. This funtion is of interest in onnetion with boundary value problemsthat we will disuss next.Theorem 1.4. Let u1; : : : ; un be a basis for N (L) suh thatdetfRjukg1�j;k�n 6= 0and set G = L�10 . Then there exists a unique ontinuous funtion g(x; t); (x; t) 2I � I, suh that (Gf)(x) = ZI g(x; t)f(t)dt:This is alled the Green's funtion g and an be onstruted as follows:1. Set ~e(x; t) = �(x� t)e(x; t), where � is the Heaviside's funtion4



2. Determine b1; : : : ; bn 2 C(I) suh that the funtiong(x; t) = ~e(x; t) + nXk=1 bk(t)uk(x)satis�es R(g(�; t)) = 0; a < t < b:Proof. First set ~u(x) = ZI ~e(x; t)f(t)dt;i.e. ~u(x) = Z xa e(x; t)f(t)dt:Repeated di�erentiations yield~u0(x) = Z xa e0x(x; t)f(t)dt+ e(x; x)| {z }=0 f(x)~u00(x) = Z xa e00x(x; t)f(t)dt+ e0x(x; x)| {z }=0 f(x)...~u(n�1)(x) = Z xa e(n�1)x (x; t)f(t)dt+ e(n�2)(x; x)| {z }=0 f(x)and ~u(n)(x) = Z xa e(n)(x; t)f(t)dt+ 1n(x)f(x):From this we onlude L~u = f . The funtionu(x) = ZI g(x; t)f(t)dtsatis�es the equation Lu = f sineu(x) = ~u(x) + nXk=1 uk(x) ZI bk(t)f(t)dt:Finally we observe that Ru = Z b�a+ R(g(�; t))| {z }=0 f(t)dtand the proof is ompleted. 5



The funtion g in Theorem 1.4 is alled the Green's funtion for the boundaryvalue problem � Lu = fRu = 0:Problem 1: Determine the Green's funtion for the boundary value problem� �((1 + x)u0(x))0 = f(x); 0 � x � 1u0(0) = 0; u(1) = 0:Solution: The funtions u1(x) = 1 and u2(x) = ln(1 + x) form a basis for thesolutions to the homogeneous equation �((1 + x)u0(x))0 = 0. Note that���� u01(0) u02(0)u1(1) u2(1) ���� = ���� 0 11 ln 2 ���� = �1 6= 0:so there exists a Green's funtion. The fundamental solution e(x; t) = a1(t)u1(x) +a2(t)u2(x) is given by e(x; t) = a1(t) + a2(t) ln(1 + x)and the onstraints e(t; t) = 0; e0x(t; t) = � 11+t easily yielde(x; t) = ln(1 + t)� ln(1 + x):The Green's funtion takes the formg(x; t) = �(x� t)(ln(1 + t)� ln(1 + x)) + b1(t) + b2(t) ln(1 + x)where � g0x(0; t) = 0g(1; t) = 0;for 0 < t < 1. Hene we get� b2(t) = 0ln(1 + t)� ln 2 + b1(t) + b2(t) ln 2 = 0from whih we obtain b1(t) = ln 21 + t ; b2(t) = 0:This �nally gives g(x; t) = �(x� t) ln 1 + t1 + x + ln 21 + t :Problem 2: Assume that � 2 C and f 2 C([0; 1℄). Show that the equation� u00(x) + u0(x) + �ju(x)j = f(x); 0 � x � 1u(0) = u(1) = 0; u 2 C2([0; 1℄)has a unique solution for j�j < e(e� 1). 6



Solution: We �rst determine the Green's funtion for the equation� u00 + u0 = F (x); 0 � x � 1u(0) = u(1) = 0:The funtions u1(x) = 1 and u2(x) = e�x form a basis for the solutions to thehomogeneous equation u00 + u0 = 0. With our standard notation we gete(x; t) = 1� et�xand g(x; t) = �(x� t)(1� et�x) + et � ee� 1 + e� ete� 1 e�x:Note that t > x) g(x; t) = et � ee� 1 (1� e�x) � 0and t � x) g(x; t) = et � 1e� 1 (1� e1�x) � 0whih implies g � 0.For every u 2 C([0; 1℄) de�ne(Tu)(x) = Z 10 g(x; t)(f(t)� �ju(t)j)dt; 0 � x � 1and observe that T maps C([0; 1℄) into fu 2 C2([0; 1℄); u(0) = u(1) = 0g. Theequation in problem 2 has therefore a unique solution i� T has a unique �xed point.For u; v 2 C([0; 1℄) it holds thatj(Tu)(x)� (Tv)(x)j = j Z 10 g(x; t)(�jv(t)j � �ju(t)j)dtj �� j�j Z 10 (�g(x; t))jjv(t)j � ju(t)jjdt � j�jj(x)ku� vk1;where k k1 denotes the max-norm for C([0; 1℄) andj(x) = � Z 10 g(x; t)dt:Sine j(0) = j(1) = 0 and j 00 + j 0 = �1 it follows thatj(x) = ee� 1 � x� ee� 1e�xand max[0;1℄ j = j�ln ee� 1� = 1e� 1 + ln�1� 1e� �� 1e� 1 � 1e = 1e(e� 1) :We onlude that kTu� Tvk1 � j�je(e� 1)ku� vk1and Banah's �xed point theorem ([2℄) implies that T has a unique �xed point forj�j < e(e� 1). 7



1.3 Spetral theory for ordinary di�erential equationsThe linear mapping L0 : CnR(I)! C(I) is alled symmetri ifhL0u; vi = hu; L0vi; all u; v 2 CnR(I);where the inner produt is given by the inner produt in L2(I)hf; hi = Z ba f(x)h(x)dx:Provided that L0 is a bijetion and g is the Green's funtion for the boundary valueproblem � Lu = fRu = 0 ;we de�ne (Gf)(x) = Z ba g(x; t)f(t)dt; f 2 C(I)and ( ~Gf)(x) = Z ba g(x; t)f(t) dt; f 2 L2(I):Theorem 1.5. Assume that L0 is a bijetion. Then the following onditions areequivalent:1. L0 is symmetri2. ~G is self-adjoint3. g(x; t) = g(t; x); x; t 2 I.Proof. (1) , (2): L0 is symmetri i�hL0Gf;Ghi = hGf; L0Ghi; f; h 2 C(I)whih is the same as hf;Ghi = hGf; hi; f; h 2 C(I):This is equivalent to hf; ~Ghi = h ~Gf; hi; f; h 2 L2(I)sine C(I) is dense in L2(I) and ~G is a bounded linear operator on L2(I) ([1℄ example4.2.4) whose restrition to C(I) is equal to G. L0 being symmetri is thus equivalentto ~G being self-adjoint.(2) , (3): We �rst observe that( ~G�f)(x) = Z ba g(t; x)f(t)dt8



([1℄ example 4.4.3). This implies that ~G = ~G� i�Z ba (g(x; t)� g(t; x))f(t)dt = 0; f 2 L2(I):Sine g is ontinuous this means that g(x; t) � g(t; x) = 0 for all x; t 2 I and sog(x; t) = g(t; x) for all x; t 2 I.Example 1: Consider the boundary value problem� �u00 = f(x)u(0) = u(1) = 0; 0 � x � 1:This means that Lu = �u00; R1u = u(0) and R2u = u(1). The operator L0 issymmetri sinehL0u; vi = Z 10 �u00�vdx = �� u0�v�10 + Z 10 u0 �v0dx = fRu = 0g == hu0; v0i = hv0; u0i = hL0v; ui = hu; L0vifor all u; v 2 C2R([0; 1℄). This fat also follows from Theorem 1.5 by heking thatL0 is a bijetion and that the Green's funtion is given byg(x; t) = � t(1� x); 0 � t < x � 1(1� t)x; 0 � x � t � 1:It easily follows that g(x; t) = g(t; x). The details are left as an exerise.Theorem 1.6. Assume that L0 is symmetri and is a bijetion. Then the followingstatements are true:1. 0 is not an eigenvalue for L0 nor for ~G.2. f is an eigenfuntion for L0 orresponding to the eigenvalue � i� f is aneigenvalue for ~G orresponding to the eigenvalue 1=�.Proof. (1): N (L0) = f0g implies that L0 has no eigenfuntion orresponding to aneigenvalue zero.Now assume that f 2 N ( ~G). We will show that f = 0. For this take an arbitrary� 2 CnR(I). We obtain0 =h0; L0�i = h ~Gf; L0�i = hf; ~GL0�i ==hf;GL0�i = hf; �i:Sine CnR(I) is dense in L2(I) we an onlude that f = 0.9



(2): )) From 0 6= f = G(L0f) = G(�f) = �Gf = � ~Gfit follows that f is an eigenfuntion to ~G orresponding to the eigenvalue 1=�.() We have Z ba g(x; t)f(t)dt = 1�f(x) a.e. in I:Setting h(x) = � Z ba g(x; t)f(t)dt; x 2 Iit follows from Lebesgue's dominated onvergene theorem (see [3℄) that h 2 C(I).Moreover we have h(x) = f(x) a:e: in I andh(x) = � Z ba g(x; t)h(t)dt; x 2 I;and hene we get Gh = 1�h. This yieldsh = L0(Gh) = L0� 1�h� = 1�L0h:Sine h 6= 0 in CnR(I), h is an eigenfuntion to L0 orresponding to the eigenvalue�. Thus h, whih is equal to f in L2(I), is an eigenfuntion to L0 orresponding tothe eigenvalue �. This is the proper interpretation of the formulation in Theorem1.6 2) and the proof of the theorem is omplete.Theorem 1.7. Assume that L0 is symmetri and is a bijetion. Moreover let (�n)11denote the eigenvalues for L0 ounted with multipliity and assume that (en)11 is aorresponding sequene of orthonormal eigenfuntions. Then (en)11 is an ON-basisfor L2(I) and the solution to the equation� Lu = fRu = 0 ;where f 2 C(I), is given byu = 1X1 1�n hf; enien (in L2(I)):Proof. The operator ~G is ompat ([1℄ example 4.8.4) and the Hilbert-Shmidt the-orem ([1℄ theorem 4.10.1) and Theorem 1.6 1) implies that (en)11 is a ompleteON-sequene for L2(I). From f = 1X1 hf; enienin L2(I), Theorem 1.6 2) now implies thatu = Gf = ~Gf = 1X1 hf; eni ~Gen = 1X1 1�n hf; enienin L2(I). 10



Example 2: Consider the boundary value problem� �u00 = f(x)u(0) = u(1) = 0; 0 � x � 1:Example 1 shows that the orresponding operator L0 is symmetri and is a bijetion.The eigenfuntions for L0 are obtained as the non-trivial solutions to the equation� �e00(x) = �e(x)e(0) = e(1) = 0; 0 � x � 1and a simple alulation gives en(x) = A sinn�x, where A 6= 0 and n = 1; 2; : : :.The sequene (p2 sinn�x)11 is therefore an ON-basis for L2([0; 1℄).Example 3: Wirtinger's inequality states thatZ 10 ju0(x)j2dx � �2 Z 10 ju(x)j2dxfor all u 2 C1([0; 1℄) that satis�es u(0) = u(1) = 0. To show this we �rst letu(x) = 1X1 anp2 sinn�x (in L2([0; 1℄))where an = Z 10 u(x)p2 sinn�xdx:Furthermore we haveZ 10 u0(x)p2 osn�xdx = hu(x)p2 osn�xi10++ n� Z 10 u(x)p2 sinn�xdx = n�anand using the fat that the sequene (p2 osn�x)11 is an ON sequene, Bessel'sinequality ([1℄ theorem 3.7.2) yields the estimateZ 10 ju0(x)j2dx � 1X1 n2�2janj2where the RHS is greater than or equal to�2 1X1 janj2 = �2 Z 10 ju(x)j2dx:This gives one proof for Wirtinger's inequality.11
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