
TMA 401/MAN 670 Funtional Analysis 2004/2005Peter KumlinMathematisChalmers & GU1 A Note on Spetral Theory1.1 IntrodutionIn this ourse we fous on equations of the formAf = g; (1)where A is a linear mapping, e.g. an integral operator, and g is a given element insome normed spae whih almost always is a Banah spae. The type of questionsone usually and naturally poses are:1. Is there a solution to Af = g and, if so is it unique?2. If the RHS g is slightly perturbed, i.e. data ~g is hosen lose to g, will thesolution ~f to A ~f = ~g be lose to f?3. If the operator ~A is a good approximation of the operator A will the solution~f to ~A ~f = g be a good approximation for f to Af = g?These questions will be made more preise and to some extent answered below.One diret way to proeed is to try to alulate the \inverse operator" A�1 andobtain f from the expression f = A�1g:Earlier we have seen examples of this for the ase where A is a small perturbationof the identity mapping on a Banah spae X, more preisely for A = I + B withkBk < 1. Here the inverse operator A�1 is given by the Neumann series�1n=0(�1)nBn;(B0 should be interpreted as I). We showed that if B 2 B(X;X), where X is aBanah spae, then we got C � �1n=0(�1)nBn 2 B(X;X) and� (I +B)C = C(I +B) = IX� kCk � 11�kBkSometimes we are able to prove the existene and uniqueness for solutions to equa-tions Af = g in Banah spaes X without being able to expliitly alulate the so-lution. An example is as follows: Assume there exists a family fAtgt2[0;1℄ of boundedlinear operators on a Banah spae that satis�es the following onditions: Thereexists a positive onstant C suh that 1



1. kfk � CkAtfk for all t 2 [0; 1℄ and all f 2 X2. kAtf � Asfk � Cjt� sj kfk for all t; s 2 [0; 1℄ and all f 2 X3. A0 is an invertible operator on X, where the inverse is a bounded linear oper-ator on X.Then we an onlude that also A1 is an invertible operator on X, where the inverseis a bounded linear operator on X. This is a general method and is referred to asthe method of ontinuity. The idea is here that A1 is a perturbation of the \nie"invertible operator A0, where the perturbation is ontrolled by onditions 1 and 2above. The proof of the statement, essentially that A1 is surjetive, is given belowand is based on Banah's �xed point theorem.Before we proeed let us make a lari�ation onerning the use of di�erent notions.When we talk about an operator A we do not a priori assume that A is linear (evenif it is a mapping between two vetor spaes) though it is in most appliations.What do we mean by an\inverse operator"? If we onsider A as a mappingX ! Y itis enough for A to be injetive, i.e. A(x) = A(y) implies x = y, for A�1 to be de�nedas a mapping R(A) ! X. Here R(A) = fy 2 Y : y = A(x) for some x 2 Xgis a subset of Y . The injetivity implies that the equation (1) has at most onesolution, viz. if g 2 R(A) there exists a unique solution otherwise there is no solution.Moreover if A is surjetive, i.e. R(A) = Y , then the equation has a unique solutionf for every g 2 Y . So if we onsider A in the ategory of mappings we say that A�1,alled the inverse mapping to A, exists if the equation (1) has a unique solutionfor every RHS, i.e. A�1(f) = g.However if X and Y are normed spaes and A is a bounded linear mapping we ouldlook for a mapping B suh thatAB = IR(A); BA = IXwith the additional properties to be linear (whih atually is automati, hek it!)and bounded. Hene if we view A in the ategory of bounded linear operatorswe all a bounded linear mapping B satisfying the onditions above the inverseoperator to A. Also in this ase we ould have that A is surjetive, i.e. R(A) = Y .In partiular this is natural to assume in the ase X = Y if we view the operatorA as an element in B(X;X) where X is a Banah spae. We observe that thespae B(X;X), for short denoted by B(X), is not just a Banah spae but also aBanah algebra, i.e. there is a multipliation de�ned in B(X) given by ompositionof operators ST (x) = S(Tx)whih satis�es the norm inequalitykSTk � kSkkTk:The inverse operator for A, provided A is surjetive, is the inverse element to A inthe Banah algebra B(X). 2



In onnetion with the Neumann series tehnique let us onsider the following ex-ample. Set X = Y = P([0; 1℄)and Ap(x) = (1� x2)p(x); x 2 [0; 1℄:Moreover assume that X and Y are equipped with the L2{norm. This means thatthe normed spaes (X; k�k2) and (Y; k�k2) are not Banah spaes. If we omplete thenormed spae we obtain the Banah spae L2([0; 1℄). The question is whether A isinvertible or not? First we note that A is injetive, i.e. Ap = Aq implies p = q. Thisis straight-forward sine Ap = Aq in Y means that Ap(x) = Aq(x) for all x 2 [0; 1℄and hene p(x) = q(x) for all x 2 [0; 1℄, i.e. p = q in X. But A is not surjetive sineR(A) onsists of all restritions of polynomials with a zero at x = 2 to the interval[0; 1℄. This shows that A : X ! R(A) has an inverse mapping. Moreover we notethat A is a bounded linear mapping from x into Y with the operator norm given bykAk = supp2P([0;1℄)kpk2=1 (Z 10 j(1� x2 ) p(x)j2 dx) 12 = 1:Prove this! A question is now if A has an inverse operator. Sine A is given asa multipliation mapping it is lear that the inverse mapping also is given by amultipliation mapping where the multiplier is 22�x . We obtain A�1 : R(A) !P([0; 1℄) as a bounded linear mapping with the operator normkA�1k = supp2R(A)kpk2=1(Z 10 j( 22� x) p(x)j2 dx) 12 = 2:Prove also this!If we extend A to all of L2([0; 1℄), all this extension ~A, whih an be done uniquelysine the polynomials in P([0; 1℄) are dense in L2([0; 1℄) and A is a bounded linearoperator on P([0; 1℄), we observe that kI � ~Ak < 1, where k � k denote the operatornorm on L2([0; 1℄), sineZ 10 jx2f(x)j2 dx � 14 Z 10 jf(x)j2 dx;and hene k(I � ~A)fk � 12kfk:From this we get that the Neumann series �1n=0(I � ~A)n gives an expression for theinverse mapping to ~A, sine ~A an be written as ~A = I � (I � ~A) on L2([0; 1℄). It isno surprise that~A�1p(x) = �1n=0(I � ~A)np(x) = �1n=0(x2)np(x) = 22� xp(x):Observe that ( ~AjP([0;1℄))�1 = A�1. The Neumann series applied to an element ofR(A) yields a polynomial, but to make sure that the series onverges we need to3



onsider the series in a Banah spae and not just a normed spae. Moreover we seethat ~A�1 is a bounded operator on the whole of L2([0; 1℄) with the norm k ~A�1k = 2but A�1 is not a bounded operator on the whole of P([0; 1℄) and this despite thefat kI � AkX!Y � kI � ~AkL2!L2 < 1:Below we present some observations that are related to the onepts inverse map-ping/inverse operator.� We �rst onsider mappings on vetor spaes. The following holds true.Theorem 1.1. Assume that E is a �nite-dimensional vetor spae and thatA : E ! E is a linear mapping. Then the following statements are equivalent:1. A is bijetive2. A is injetive, i.e. N (A) = f0g3. A is surjetive, i.e. R(A) = ENote that this is not true for in�nite-dimensional vetor spaes, whih is shownby the following example.Set E = C([0; 1℄)and Af(x) = Z x0 f(t) dt; x 2 [0; 1℄:Prove that A is injetive but not surjetive!� From now on we only onsider linear mappings X ! Y where X and Y areBanah spaes. We know that{ A is ontinuous at x0 2 X implies that A is ontinuous on X{ A is ontinuous i� A is a bounded mapping.It an be shown, not without some e�ort, that there are linear mappingsA : X ! X that are not bounded, i.e. the linearity and the mapping propertyA(X) � X is not enough for A to be a bounded operator. This has somerelevane when returning to the stability-question 2 in the introdution, i.e.whether the fat that A : X ! Y is a bijetive bounded linear operator impliesthat there exists a onstant C suh thatkf � ~fk � Ckg � ~gk;for all g; ~g 2 Y where Af = g and A ~f = ~g? The answer is given byTheorem 1.2 (Inverse mapping theorem). Assume that A : X ! Y is abijetive bounded linear mapping from the Banah spae X onto the Banahspae Y . Then the mapping A�1 exists as a bounded linear mapping from Yonto X. 4



The answer to the question above is yes!The proof is based on Baire's Theorem (see [4℄ setion 1.4). Often the inversemapping theorem is given as a orollary to the open mapping theorem, thatalso an be proved using Baire's theorem. We formulate the theorem withoutproof.Theorem 1.3 (Open mapping theorem). Assume that A : X ! Y is asurjetive bounded linear mapping from the Banah spae X onto the Banahspae Y . Then A maps open sets in X onto open sets in Y .Reall that a mapping A : X ! Y is ontinuous i� the set A�1(U) is open inX for every open set U in Y .It has been shown, using Neumann series, that the equation Af = g is uniquelysolvable if A = I � T and kTk < 1. However this is a serious restrition. We wantto solve equations where T is not a small perturbation of the identity mapping. Todo this we will, as for the �nite-dimensional ase, study the equation(�I � T )f = gwhere � is a omplex parameter. In this ontext onepts like spetrum, resolventand resolvent set are introdued. A more extensive treatment an be found in thebooks [2℄, [3℄ and [5℄. The �rst two books are on the same level as the textbook.Assume that X is a omplex normed spae and that T : D(T ) ! X is a boundedlinear mapping with D(T ) � X. Almost always we have D(T ) = X.De�nition 1.1. The resolvent set for T , denoted �(T ), onsists of all omplexnumbers � 2 C for whih (T ��I)�1 exists as an inverse operator on all of X. Themapping �(T ) 3 � 7! (�I � T )�1 is alled the resolvent for T .It follows from the de�nition that � 2 �(T ) implies that N (T � �I) = f0g and thatR(T � �I) = X.De�nition 1.2. The spetrum for T , denoted by �(T ), is the set Cn�(T ). This setis the union of the three mutually disjoint subsets �p(T ), �(T ) and �r(T ). These arealled the point spetrum, the ontinuous spetrum and the residual spe-trum respetively and are de�ned by the properties� � 2 �p(T ) if N (T � �I) 6= f0g. Here � is alled an eigenvalue for T and av 2 N (T ��I)nf0g is alled an eigenvetor orresponding to the eigenvalue�;� � 2 �(T ) if N (T � �I) = f0g and R(T � �I) is dense in X but (T � �I)�1is not a bounded operator;� � 2 �r(T ) if N (T � �I) = f0g but R(T � �I) is not dense in X.5



Examples:1. Assume that T : X ! X is a linear mapping on a �nite-dimensional normedspae X. Then we have �(T ) = �p(T ) and the spetrum onsists of �nitelymany elements.2. Consider the linear mapping T : l2 ! l2 de�ned by(x1; x2; x3; : : :) 7! (0; x1; x2; : : :)T is a so alled right shift operator. Then we have 0 2 �(T ) n �p(T ).From now on we assume that T is a bounded operator.Theorem 1.4. The resolvent set is an open set.Proof. (a sketh) We note that� if A : X ! X is a bounded linear operator with kAk < 1 then (I�A)�1 existsas an inverse operator on all of X and(I � A)�1 = I + A + A2 + A3 + � � �(Neumann series)� if �0 2 �(T ) we have the formulaT � �I = (T � �0)(I � (�� �0)(T � �0I)�1):Combining these observations we obtain the result.In this ontext we give a proof for the method of ontinuity. Condition 1 impliesthat all At, t 2 [0; 1℄, are injetive. Assuming that At has an inverse operator de�nedon all of X we an write the operator As asAs = At(I + A�1t (As � At)):Hene it follows that As is invertible if kA�1t (As � At)k < 1. But now ondition 1implies that kA�1t k � C and ondition 2 implies kAs � Atk � Cjs� tj. This yieldsthat kA�1t (As � At)k � kA�1t k kAs � Atk < 1provided js� tj < 1C2 :Take a �nite sequene of points tn, 0 = t1 < t2 < : : : < tn < tn+1 < : : : < tN = 1,suh that maxn=1;2;:::;N�1 jtn+1 � tnj < 1C2 :The argument above shows that Atn+1 is invertible if Atn is invertible and henethe invertibility of A0 implies the invertibility of A1. (Invertibility of an operator Bmeans that B�1 exists as an inverse operator and B is surjetive.)6



Theorem 1.5. The spetrum �(T ) belongs to the disf� 2 C : j�j � kTkgin the omplex plane.Proof. Exerise!Theorem 1.6. The spetrum �(T ) is non-empty.The proof an be based on Liouville's Theorem, well-known from ourses in omplexanalysis, but is omitted.De�nition 1.3. The approximate point spetrum to T , denoted by �a(T ), on-sists of all � 2 C for whih there exists a sequene (xn)1n=1 in X, with kxnk = 1suh that limn!1 k(T � �I)xnk = 0:The following result summarizes the important properties for the approximate pointspetrum.Theorem 1.7. Assume that T is a bounded operator on X. Then we have:1. �a(T ) is a losed non-empty subset of �(T );2. �p(T )S�(T ) � �a(T );3. the boundary of �(T ) is a subset of �a(T );From now on we assume that the linear operator T is ompat and that X is aBanah spae. An operator T is alled ompat on X if for every bounded sequene(xn)1n=1 in X there exists a onvergent subsequene of (Txn)1n=1 in X. Using Riesz'Lemma (see [4℄ setion 1.2) together with a lot of hard work one an show thefollowing theorem that usually is alled Fredholm's alternative.Theorem 1.8 (Fredholm's alternative). Let T be a ompat linear operator ona Banah spae X and let � 2 C n f0g. Then one of the statements below hold true:1. the homogeneous equation Tx� �x = 0has non-trivial solutions x 2 X2. for every y 2 X the equation Tx� �x = yhas a unique solution x 2 X. 7



In the seond ase the operator (T � �I)�1 exists as a bounded operator.Example: Consider the Volterra equationf(x) = g(x) + Z x0 K(x; y)f(y) dy 0 � x � 1;where K is a ontinuous funtion for 0 � x; y � 1. Show that for every g 2 C([0; 1℄)there exists a f 2 C([0; 1℄) that solves the equation. From Fredholm's alternativewith X = C([0; 1℄) it is enough to show that N (T � I) = f0g, where T is theompat (show this using for instane Arzela-Asoli Theorem) operatorTf(x) = Z x0 K(x; y)f(y) dyon C([0; 1℄). We will show thatf(x) = Z x0 K(x; y)f(y) dy 0 � x � 1implies that f = 0. Set M = max0�x;y�1 jK(x; y)j and�(x) = Z x0 jf(y)j dy 0 � x � 1:It follows that � is di�erentiable and�0(x) = jf(x)j �M�(x) 0 � x � 1and hene (�(x)e�Mx)0 � 0 and �nally0 � �(x) � �(0)e�Mx 0 � x � 1:But we have �(0) = 0 and the desired onlusion follows.Moreover the following result holds.Theorem 1.9 (Riesz-Shauder Theorem). Assume that T : X ! X is a om-pat linear operator on a Banah spae X. Then the following statements hold true:1. �p(T ) is ountable, an be �nite or even empty;2. � = 0 is the only lustering point for the set �p(T );3. � is an eigenvalue if � 2 �(T ) n f0g;4. X in�nite-dimensional spae implies that 0 2 �(T ) ;5. For � 6= 0 the subspaesR((T��I)r) are losed and the subspaesN ((T��I)r)are �nite-dimensional for r = 1; 2; 3; : : :;8



6. For � 6= 0 there exists a non-negative integer r, depending on �, suh thatX = N ((T � �)r)MR((T � �)r)and N ((T � �I)r) = N ((T � �I)r+1) = N ((T � �I)r+2) = � � �and R((T � �I)r) = R((T � �I)r+1) = R((T � �I)r+2) = � � � :Moreover if r > 0 it holds thatN (I) � N ((T � �I)1) � � � � � N ((T � �I)r)and R(I) � R((T � �I)1) � � � � � R((T � �I)r);where � and � denotes proper subset.7. For � 6= 0 it holds that1 R(T � �I) = N (T � � �I)?:The last statement in the theorem has a meaning to us if X is a Hilbert spae(the \Riesz part" of the theorem) but it is also possible to assign a meaning to theonept adjoint operator in a Banah spae and to the\orthogonal omplement"thatusually is alled the set of annihilators (the \Shauder part" of the theorem is thegeneralisation to arbitrary Banah spaes). It should be noted that the de�nition ofadjoint operator on a Banah spae di�ers slightly from the Hilbert spae ase butjust up to an isometry. For those who are interested we refer to [2℄, [3℄ and [5℄.If we use the last part of Riesz-Shauder's Theorem we an make Fredholm's alter-native a bit more preise.Theorem 1.10 (Fredholm's alternative). Let T be a ompat linear operator ona Banah spae X and let � 6= 0. Then it holds that Tx��x = y has a solution i�2y 2 N (T � � �I)?.Now let X = H be a Hilbert spae and T a ompat linear operator on H. If T isself-adjoint we obtain the ounterpart to Fredholm's alternative that is given in thetextbook [1℄ theorem 5.2.6, whih using Hilbert spae notations an be written asR(T � I) = N (T � I)?:1There is a di�erene here ompared to when X is a Hilbert spae whih depends on thede�nition of adjoint operator. If we use our standard de�nition from [1℄ the relation should beR(T � �I) = N (T � � �I)?:2If X is a Hilbert spae and the usual de�nition for adjoint operator is used the relation shouldbe y 2 N (T � � �I)?. 9



For the ase with self-adjoint ompat operators on Hilbert spaes the integer r inTheorem 1.9 will be equal to 1. In onnetion with n� n{matries and their eigen-values this orresponds to the fat that the algebrai multipliity and the geometrimultipliity are equal for eigenvalues to hermitian matries.Let us very briey indiate the Banah spae ase.For arbitrary Banah spaes X we set X� = B(X;C), onsidered as a Banah spae with the norm given by the operator normk � kX!C. Let T be a bounded linear mapping from the Banah spae X into the Banah spae Y . We de�ne the mappingT� : Y � ! X� using the relation (T�y�)(x) = y�(Tx) alla y 2 Y �; x 2 X:It is easy to show that T� is a bounded linear mapping with kT�kY �!X� = kTkY!X . For sets A � X and B � X� in a Banahspae X we set A? = fx� 2 X� : x�(x) = 0 alla x 2 Agand B? = fx 2 X : x�(x) = 0 alla x� 2 Ag:Here A? and B? beome losed subspaes in X� and X respetively. We detet a di�erene in the de�nition ompared to theorthogonal omplement for a set A in a Hilbert spae! The following result an be proved (we reognise it for the ase X = Cn,Y = Cmand T given by a m � n{matrix).Theorem 1.11. Assume that X and Y are Banah spaes and that T 2 B(X;Y ). Then it holds thatR(T ) = N (T�)?:If R(T ) = R(T ) it holds that R(T�) = N (T )?and R(T�) = R(T�).For T in Theorem 1.11 it is true that if T is ompat then T� is also ompat (the onverse is also true). T being ompat alsoimplies that R(T � �I) is losed (ompare [4℄ setion 1.6). Theorem 1.11 implies thatR(T � �I) = N (T� � �I)?and R(T� � �I) = N (T � �I)?:Finally we refer to the textbook [1℄ for the spetral theory for ompat self-adjointoperators.Referenes[1℄ L.Debnath/P.Mikusinski, Introdution to Hilbert Spaes with Appliations 2nded., Aademi Press 1999[2℄ A.Friedman, Foundations of modern analysis, Holt Rinehart and Winston, 1970[3℄ E.Kreyszig, Introdution to funtional analysis with appliations, Wiley 1989[4℄ P.Kumlin, Exerises, Mathematis, Chalmers & GU 2004/2005[5℄ W.Rudin, Funtional Analysis, MGraw-Hill, 1991
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