
TMA 401/MAN 670 Fun
tional Analysis 2004/2005Peter KumlinMathemati
sChalmers & GU1 A Note on Spe
tral Theory1.1 Introdu
tionIn this 
ourse we fo
us on equations of the formAf = g; (1)where A is a linear mapping, e.g. an integral operator, and g is a given element insome normed spa
e whi
h almost always is a Bana
h spa
e. The type of questionsone usually and naturally poses are:1. Is there a solution to Af = g and, if so is it unique?2. If the RHS g is slightly perturbed, i.e. data ~g is 
hosen 
lose to g, will thesolution ~f to A ~f = ~g be 
lose to f?3. If the operator ~A is a good approximation of the operator A will the solution~f to ~A ~f = g be a good approximation for f to Af = g?These questions will be made more pre
ise and to some extent answered below.One dire
t way to pro
eed is to try to 
al
ulate the \inverse operator" A�1 andobtain f from the expression f = A�1g:Earlier we have seen examples of this for the 
ase where A is a small perturbationof the identity mapping on a Bana
h spa
e X, more pre
isely for A = I + B withkBk < 1. Here the inverse operator A�1 is given by the Neumann series�1n=0(�1)nBn;(B0 should be interpreted as I). We showed that if B 2 B(X;X), where X is aBana
h spa
e, then we got C � �1n=0(�1)nBn 2 B(X;X) and� (I +B)C = C(I +B) = IX� kCk � 11�kBkSometimes we are able to prove the existen
e and uniqueness for solutions to equa-tions Af = g in Bana
h spa
es X without being able to expli
itly 
al
ulate the so-lution. An example is as follows: Assume there exists a family fAtgt2[0;1℄ of boundedlinear operators on a Bana
h spa
e that satis�es the following 
onditions: Thereexists a positive 
onstant C su
h that 1



1. kfk � CkAtfk for all t 2 [0; 1℄ and all f 2 X2. kAtf � Asfk � Cjt� sj kfk for all t; s 2 [0; 1℄ and all f 2 X3. A0 is an invertible operator on X, where the inverse is a bounded linear oper-ator on X.Then we 
an 
on
lude that also A1 is an invertible operator on X, where the inverseis a bounded linear operator on X. This is a general method and is referred to asthe method of 
ontinuity. The idea is here that A1 is a perturbation of the \ni
e"invertible operator A0, where the perturbation is 
ontrolled by 
onditions 1 and 2above. The proof of the statement, essentially that A1 is surje
tive, is given belowand is based on Bana
h's �xed point theorem.Before we pro
eed let us make a 
lari�
ation 
on
erning the use of di�erent notions.When we talk about an operator A we do not a priori assume that A is linear (evenif it is a mapping between two ve
tor spa
es) though it is in most appli
ations.What do we mean by an\inverse operator"? If we 
onsider A as a mappingX ! Y itis enough for A to be inje
tive, i.e. A(x) = A(y) implies x = y, for A�1 to be de�nedas a mapping R(A) ! X. Here R(A) = fy 2 Y : y = A(x) for some x 2 Xgis a subset of Y . The inje
tivity implies that the equation (1) has at most onesolution, viz. if g 2 R(A) there exists a unique solution otherwise there is no solution.Moreover if A is surje
tive, i.e. R(A) = Y , then the equation has a unique solutionf for every g 2 Y . So if we 
onsider A in the 
ategory of mappings we say that A�1,
alled the inverse mapping to A, exists if the equation (1) has a unique solutionfor every RHS, i.e. A�1(f) = g.However if X and Y are normed spa
es and A is a bounded linear mapping we 
ouldlook for a mapping B su
h thatAB = IR(A); BA = IXwith the additional properties to be linear (whi
h a
tually is automati
, 
he
k it!)and bounded. Hen
e if we view A in the 
ategory of bounded linear operatorswe 
all a bounded linear mapping B satisfying the 
onditions above the inverseoperator to A. Also in this 
ase we 
ould have that A is surje
tive, i.e. R(A) = Y .In parti
ular this is natural to assume in the 
ase X = Y if we view the operatorA as an element in B(X;X) where X is a Bana
h spa
e. We observe that thespa
e B(X;X), for short denoted by B(X), is not just a Bana
h spa
e but also aBana
h algebra, i.e. there is a multipli
ation de�ned in B(X) given by 
ompositionof operators ST (x) = S(Tx)whi
h satis�es the norm inequalitykSTk � kSkkTk:The inverse operator for A, provided A is surje
tive, is the inverse element to A inthe Bana
h algebra B(X). 2



In 
onne
tion with the Neumann series te
hnique let us 
onsider the following ex-ample. Set X = Y = P([0; 1℄)and Ap(x) = (1� x2)p(x); x 2 [0; 1℄:Moreover assume that X and Y are equipped with the L2{norm. This means thatthe normed spa
es (X; k�k2) and (Y; k�k2) are not Bana
h spa
es. If we 
omplete thenormed spa
e we obtain the Bana
h spa
e L2([0; 1℄). The question is whether A isinvertible or not? First we note that A is inje
tive, i.e. Ap = Aq implies p = q. Thisis straight-forward sin
e Ap = Aq in Y means that Ap(x) = Aq(x) for all x 2 [0; 1℄and hen
e p(x) = q(x) for all x 2 [0; 1℄, i.e. p = q in X. But A is not surje
tive sin
eR(A) 
onsists of all restri
tions of polynomials with a zero at x = 2 to the interval[0; 1℄. This shows that A : X ! R(A) has an inverse mapping. Moreover we notethat A is a bounded linear mapping from x into Y with the operator norm given bykAk = supp2P([0;1℄)kpk2=1 (Z 10 j(1� x2 ) p(x)j2 dx) 12 = 1:Prove this! A question is now if A has an inverse operator. Sin
e A is given asa multipli
ation mapping it is 
lear that the inverse mapping also is given by amultipli
ation mapping where the multiplier is 22�x . We obtain A�1 : R(A) !P([0; 1℄) as a bounded linear mapping with the operator normkA�1k = supp2R(A)kpk2=1(Z 10 j( 22� x) p(x)j2 dx) 12 = 2:Prove also this!If we extend A to all of L2([0; 1℄), 
all this extension ~A, whi
h 
an be done uniquelysin
e the polynomials in P([0; 1℄) are dense in L2([0; 1℄) and A is a bounded linearoperator on P([0; 1℄), we observe that kI � ~Ak < 1, where k � k denote the operatornorm on L2([0; 1℄), sin
eZ 10 jx2f(x)j2 dx � 14 Z 10 jf(x)j2 dx;and hen
e k(I � ~A)fk � 12kfk:From this we get that the Neumann series �1n=0(I � ~A)n gives an expression for theinverse mapping to ~A, sin
e ~A 
an be written as ~A = I � (I � ~A) on L2([0; 1℄). It isno surprise that~A�1p(x) = �1n=0(I � ~A)np(x) = �1n=0(x2)np(x) = 22� xp(x):Observe that ( ~AjP([0;1℄))�1 = A�1. The Neumann series applied to an element ofR(A) yields a polynomial, but to make sure that the series 
onverges we need to3




onsider the series in a Bana
h spa
e and not just a normed spa
e. Moreover we seethat ~A�1 is a bounded operator on the whole of L2([0; 1℄) with the norm k ~A�1k = 2but A�1 is not a bounded operator on the whole of P([0; 1℄) and this despite thefa
t kI � AkX!Y � kI � ~AkL2!L2 < 1:Below we present some observations that are related to the 
on
epts inverse map-ping/inverse operator.� We �rst 
onsider mappings on ve
tor spa
es. The following holds true.Theorem 1.1. Assume that E is a �nite-dimensional ve
tor spa
e and thatA : E ! E is a linear mapping. Then the following statements are equivalent:1. A is bije
tive2. A is inje
tive, i.e. N (A) = f0g3. A is surje
tive, i.e. R(A) = ENote that this is not true for in�nite-dimensional ve
tor spa
es, whi
h is shownby the following example.Set E = C([0; 1℄)and Af(x) = Z x0 f(t) dt; x 2 [0; 1℄:Prove that A is inje
tive but not surje
tive!� From now on we only 
onsider linear mappings X ! Y where X and Y areBana
h spa
es. We know that{ A is 
ontinuous at x0 2 X implies that A is 
ontinuous on X{ A is 
ontinuous i� A is a bounded mapping.It 
an be shown, not without some e�ort, that there are linear mappingsA : X ! X that are not bounded, i.e. the linearity and the mapping propertyA(X) � X is not enough for A to be a bounded operator. This has somerelevan
e when returning to the stability-question 2 in the introdu
tion, i.e.whether the fa
t that A : X ! Y is a bije
tive bounded linear operator impliesthat there exists a 
onstant C su
h thatkf � ~fk � Ckg � ~gk;for all g; ~g 2 Y where Af = g and A ~f = ~g? The answer is given byTheorem 1.2 (Inverse mapping theorem). Assume that A : X ! Y is abije
tive bounded linear mapping from the Bana
h spa
e X onto the Bana
hspa
e Y . Then the mapping A�1 exists as a bounded linear mapping from Yonto X. 4



The answer to the question above is yes!The proof is based on Baire's Theorem (see [4℄ se
tion 1.4). Often the inversemapping theorem is given as a 
orollary to the open mapping theorem, thatalso 
an be proved using Baire's theorem. We formulate the theorem withoutproof.Theorem 1.3 (Open mapping theorem). Assume that A : X ! Y is asurje
tive bounded linear mapping from the Bana
h spa
e X onto the Bana
hspa
e Y . Then A maps open sets in X onto open sets in Y .Re
all that a mapping A : X ! Y is 
ontinuous i� the set A�1(U) is open inX for every open set U in Y .It has been shown, using Neumann series, that the equation Af = g is uniquelysolvable if A = I � T and kTk < 1. However this is a serious restri
tion. We wantto solve equations where T is not a small perturbation of the identity mapping. Todo this we will, as for the �nite-dimensional 
ase, study the equation(�I � T )f = gwhere � is a 
omplex parameter. In this 
ontext 
on
epts like spe
trum, resolventand resolvent set are introdu
ed. A more extensive treatment 
an be found in thebooks [2℄, [3℄ and [5℄. The �rst two books are on the same level as the textbook.Assume that X is a 
omplex normed spa
e and that T : D(T ) ! X is a boundedlinear mapping with D(T ) � X. Almost always we have D(T ) = X.De�nition 1.1. The resolvent set for T , denoted �(T ), 
onsists of all 
omplexnumbers � 2 C for whi
h (T ��I)�1 exists as an inverse operator on all of X. Themapping �(T ) 3 � 7! (�I � T )�1 is 
alled the resolvent for T .It follows from the de�nition that � 2 �(T ) implies that N (T � �I) = f0g and thatR(T � �I) = X.De�nition 1.2. The spe
trum for T , denoted by �(T ), is the set Cn�(T ). This setis the union of the three mutually disjoint subsets �p(T ), �
(T ) and �r(T ). These are
alled the point spe
trum, the 
ontinuous spe
trum and the residual spe
-trum respe
tively and are de�ned by the properties� � 2 �p(T ) if N (T � �I) 6= f0g. Here � is 
alled an eigenvalue for T and av 2 N (T ��I)nf0g is 
alled an eigenve
tor 
orresponding to the eigenvalue�;� � 2 �
(T ) if N (T � �I) = f0g and R(T � �I) is dense in X but (T � �I)�1is not a bounded operator;� � 2 �r(T ) if N (T � �I) = f0g but R(T � �I) is not dense in X.5



Examples:1. Assume that T : X ! X is a linear mapping on a �nite-dimensional normedspa
e X. Then we have �(T ) = �p(T ) and the spe
trum 
onsists of �nitelymany elements.2. Consider the linear mapping T : l2 ! l2 de�ned by(x1; x2; x3; : : :) 7! (0; x1; x2; : : :)T is a so 
alled right shift operator. Then we have 0 2 �(T ) n �p(T ).From now on we assume that T is a bounded operator.Theorem 1.4. The resolvent set is an open set.Proof. (a sket
h) We note that� if A : X ! X is a bounded linear operator with kAk < 1 then (I�A)�1 existsas an inverse operator on all of X and(I � A)�1 = I + A + A2 + A3 + � � �(Neumann series)� if �0 2 �(T ) we have the formulaT � �I = (T � �0)(I � (�� �0)(T � �0I)�1):Combining these observations we obtain the result.In this 
ontext we give a proof for the method of 
ontinuity. Condition 1 impliesthat all At, t 2 [0; 1℄, are inje
tive. Assuming that At has an inverse operator de�nedon all of X we 
an write the operator As asAs = At(I + A�1t (As � At)):Hen
e it follows that As is invertible if kA�1t (As � At)k < 1. But now 
ondition 1implies that kA�1t k � C and 
ondition 2 implies kAs � Atk � Cjs� tj. This yieldsthat kA�1t (As � At)k � kA�1t k kAs � Atk < 1provided js� tj < 1C2 :Take a �nite sequen
e of points tn, 0 = t1 < t2 < : : : < tn < tn+1 < : : : < tN = 1,su
h that maxn=1;2;:::;N�1 jtn+1 � tnj < 1C2 :The argument above shows that Atn+1 is invertible if Atn is invertible and hen
ethe invertibility of A0 implies the invertibility of A1. (Invertibility of an operator Bmeans that B�1 exists as an inverse operator and B is surje
tive.)6



Theorem 1.5. The spe
trum �(T ) belongs to the dis
f� 2 C : j�j � kTkgin the 
omplex plane.Proof. Exer
ise!Theorem 1.6. The spe
trum �(T ) is non-empty.The proof 
an be based on Liouville's Theorem, well-known from 
ourses in 
omplexanalysis, but is omitted.De�nition 1.3. The approximate point spe
trum to T , denoted by �a(T ), 
on-sists of all � 2 C for whi
h there exists a sequen
e (xn)1n=1 in X, with kxnk = 1su
h that limn!1 k(T � �I)xnk = 0:The following result summarizes the important properties for the approximate pointspe
trum.Theorem 1.7. Assume that T is a bounded operator on X. Then we have:1. �a(T ) is a 
losed non-empty subset of �(T );2. �p(T )S�
(T ) � �a(T );3. the boundary of �(T ) is a subset of �a(T );From now on we assume that the linear operator T is 
ompa
t and that X is aBana
h spa
e. An operator T is 
alled 
ompa
t on X if for every bounded sequen
e(xn)1n=1 in X there exists a 
onvergent subsequen
e of (Txn)1n=1 in X. Using Riesz'Lemma (see [4℄ se
tion 1.2) together with a lot of hard work one 
an show thefollowing theorem that usually is 
alled Fredholm's alternative.Theorem 1.8 (Fredholm's alternative). Let T be a 
ompa
t linear operator ona Bana
h spa
e X and let � 2 C n f0g. Then one of the statements below hold true:1. the homogeneous equation Tx� �x = 0has non-trivial solutions x 2 X2. for every y 2 X the equation Tx� �x = yhas a unique solution x 2 X. 7



In the se
ond 
ase the operator (T � �I)�1 exists as a bounded operator.Example: Consider the Volterra equationf(x) = g(x) + Z x0 K(x; y)f(y) dy 0 � x � 1;where K is a 
ontinuous fun
tion for 0 � x; y � 1. Show that for every g 2 C([0; 1℄)there exists a f 2 C([0; 1℄) that solves the equation. From Fredholm's alternativewith X = C([0; 1℄) it is enough to show that N (T � I) = f0g, where T is the
ompa
t (show this using for instan
e Arzela-As
oli Theorem) operatorTf(x) = Z x0 K(x; y)f(y) dyon C([0; 1℄). We will show thatf(x) = Z x0 K(x; y)f(y) dy 0 � x � 1implies that f = 0. Set M = max0�x;y�1 jK(x; y)j and�(x) = Z x0 jf(y)j dy 0 � x � 1:It follows that � is di�erentiable and�0(x) = jf(x)j �M�(x) 0 � x � 1and hen
e (�(x)e�Mx)0 � 0 and �nally0 � �(x) � �(0)e�Mx 0 � x � 1:But we have �(0) = 0 and the desired 
on
lusion follows.Moreover the following result holds.Theorem 1.9 (Riesz-S
hauder Theorem). Assume that T : X ! X is a 
om-pa
t linear operator on a Bana
h spa
e X. Then the following statements hold true:1. �p(T ) is 
ountable, 
an be �nite or even empty;2. � = 0 is the only 
lustering point for the set �p(T );3. � is an eigenvalue if � 2 �(T ) n f0g;4. X in�nite-dimensional spa
e implies that 0 2 �(T ) ;5. For � 6= 0 the subspa
esR((T��I)r) are 
losed and the subspa
esN ((T��I)r)are �nite-dimensional for r = 1; 2; 3; : : :;8



6. For � 6= 0 there exists a non-negative integer r, depending on �, su
h thatX = N ((T � �)r)MR((T � �)r)and N ((T � �I)r) = N ((T � �I)r+1) = N ((T � �I)r+2) = � � �and R((T � �I)r) = R((T � �I)r+1) = R((T � �I)r+2) = � � � :Moreover if r > 0 it holds thatN (I) � N ((T � �I)1) � � � � � N ((T � �I)r)and R(I) � R((T � �I)1) � � � � � R((T � �I)r);where � and � denotes proper subset.7. For � 6= 0 it holds that1 R(T � �I) = N (T � � �I)?:The last statement in the theorem has a meaning to us if X is a Hilbert spa
e(the \Riesz part" of the theorem) but it is also possible to assign a meaning to the
on
ept adjoint operator in a Bana
h spa
e and to the\orthogonal 
omplement"thatusually is 
alled the set of annihilators (the \S
hauder part" of the theorem is thegeneralisation to arbitrary Bana
h spa
es). It should be noted that the de�nition ofadjoint operator on a Bana
h spa
e di�ers slightly from the Hilbert spa
e 
ase butjust up to an isometry. For those who are interested we refer to [2℄, [3℄ and [5℄.If we use the last part of Riesz-S
hauder's Theorem we 
an make Fredholm's alter-native a bit more pre
ise.Theorem 1.10 (Fredholm's alternative). Let T be a 
ompa
t linear operator ona Bana
h spa
e X and let � 6= 0. Then it holds that Tx��x = y has a solution i�2y 2 N (T � � �I)?.Now let X = H be a Hilbert spa
e and T a 
ompa
t linear operator on H. If T isself-adjoint we obtain the 
ounterpart to Fredholm's alternative that is given in thetextbook [1℄ theorem 5.2.6, whi
h using Hilbert spa
e notations 
an be written asR(T � I) = N (T � I)?:1There is a di�eren
e here 
ompared to when X is a Hilbert spa
e whi
h depends on thede�nition of adjoint operator. If we use our standard de�nition from [1℄ the relation should beR(T � �I) = N (T � � �I)?:2If X is a Hilbert spa
e and the usual de�nition for adjoint operator is used the relation shouldbe y 2 N (T � � �I)?. 9



For the 
ase with self-adjoint 
ompa
t operators on Hilbert spa
es the integer r inTheorem 1.9 will be equal to 1. In 
onne
tion with n� n{matri
es and their eigen-values this 
orresponds to the fa
t that the algebrai
 multipli
ity and the geometri
multipli
ity are equal for eigenvalues to hermitian matri
es.Let us very brie
y indi
ate the Bana
h spa
e 
ase.For arbitrary Bana
h spa
es X we set X� = B(X;C), 
onsidered as a Bana
h spa
e with the norm given by the operator normk � kX!C. Let T be a bounded linear mapping from the Bana
h spa
e X into the Bana
h spa
e Y . We de�ne the mappingT� : Y � ! X� using the relation (T�y�)(x) = y�(Tx) alla y 2 Y �; x 2 X:It is easy to show that T� is a bounded linear mapping with kT�kY �!X� = kTkY!X . For sets A � X and B � X� in a Bana
hspa
e X we set A? = fx� 2 X� : x�(x) = 0 alla x 2 Agand B? = fx 2 X : x�(x) = 0 alla x� 2 Ag:Here A? and B? be
ome 
losed subspa
es in X� and X respe
tively. We dete
t a di�eren
e in the de�nition 
ompared to theorthogonal 
omplement for a set A in a Hilbert spa
e! The following result 
an be proved (we re
ognise it for the 
ase X = Cn,Y = Cmand T given by a m � n{matrix).Theorem 1.11. Assume that X and Y are Bana
h spa
es and that T 2 B(X;Y ). Then it holds thatR(T ) = N (T�)?:If R(T ) = R(T ) it holds that R(T�) = N (T )?and R(T�) = R(T�).For T in Theorem 1.11 it is true that if T is 
ompa
t then T� is also 
ompa
t (the 
onverse is also true). T being 
ompa
t alsoimplies that R(T � �I) is 
losed (
ompare [4℄ se
tion 1.6). Theorem 1.11 implies thatR(T � �I) = N (T� � �I)?and R(T� � �I) = N (T � �I)?:Finally we refer to the textbook [1℄ for the spe
tral theory for 
ompa
t self-adjointoperators.Referen
es[1℄ L.Debnath/P.Mikusinski, Introdu
tion to Hilbert Spa
es with Appli
ations 2nded., A
ademi
 Press 1999[2℄ A.Friedman, Foundations of modern analysis, Holt Rinehart and Winston, 1970[3℄ E.Kreyszig, Introdu
tion to fun
tional analysis with appli
ations, Wiley 1989[4℄ P.Kumlin, Exer
ises, Mathemati
s, Chalmers & GU 2004/2005[5℄ W.Rudin, Fun
tional Analysis, M
Graw-Hill, 1991
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