Lösningsförslag till TMA401/MAN670 2004-05-29

1. Consider the BVP

$$\begin{cases} Lu = u''(x) - u(x) = -\frac{1}{2}(1 + u(x^2)), & x \in [0, 1] \\ u(0) = u'(0) = 0, \ u \in C^2([0, 1]) \end{cases}$$
(*)

Calculation of Green's function

$$g(x,t) = (a_1(t)e^x + a_2(t)e^{-x})\theta(x-t) + b_1(t)e^x + b_2(t)e^{-x}$$

where

$$\begin{cases} a_1(t)e^t + a_2(t)e^{-t} = 0 & a_1(t) = \frac{1}{2}e^{-t} \\ a_1(t)e^t - a_2(t)e^{-t} = 1 & a_2(t) = -\frac{1}{2}e^t \end{cases}$$

and

$$\begin{cases} b_1(t) + b_2(t) = 0 \\ b_1(t) - b_2(t) = 0 \end{cases}$$
 i.e. $b_1(t) = 0 \\ b_2(t) = 0 \end{cases}$

Hence we have $g(x,t) = \sinh(x-t)\theta(x-t)$.

Now set

$$T: C([0,1]) \longrightarrow C([0,1]),$$

where $Tu(x) = \int_0^1 g(x,t)(-\frac{1}{2}(1+u(t^2)))dt$. From Banach's fixed point theorem we conclude that (*) has a unique solution if T is a contraction. For $u, v \in C([0,1])$ we have

$$\begin{aligned} |Tu(x) - Tv(x)| &= |\int_0^1 g(x,t) \frac{1}{2} (u(t^2) - v(t^2)) dt| \le \\ &\le \frac{1}{2} \int_0^1 |g(x,t)| dt ||u - v||_{\infty} = \frac{1}{2} (\cosh k - 1) ||u - v||_{\infty} \le \\ &\le \underbrace{\frac{1}{4} (e + \frac{1}{e} - 2)}_{<1} ||u - v||_{\infty}. \end{aligned}$$

Here T is a contraction and the statement follows.

2. Set, for $f \in L^2([a,b]), Tf(x) = \frac{1}{b-a} \int_a^b f(x) dx, x \in [a,b].$

$$Tf \in L^{2}([a, b]) \text{ since}$$

$$\|f\|_{L^{2}}^{2} = \int_{a}^{b} \left(\frac{1}{b-a} | \int_{a}^{b} f(x) \, dx |\right)^{2} dt =$$

$$= \left(\frac{1}{b-a}\right)^{2} \int_{a}^{b} | \int_{a}^{b} f(x) \, dx |^{2} dt \leq \{\text{H\"{o}lder}\} \leq$$

$$\leq \left(\frac{1}{b-a}\right)^{2} \int_{a}^{b} (b-a) \int_{a}^{b} |f(x)|^{2} dx dt = \int_{a}^{b} |f(x)|^{2} dt = \|f\|_{L^{2}}^{2}.$$

T linear: easy to show.

T bounded: see above. In particular we get $||T|| \leq 1$.

To show that T is an orthogonal projection it suffices to show that $T^2 = T$ and $T^* = T$.

(a) Take $f \in L^2([a, b])$. Then

$$(T^{2}f)(x) = T(\frac{1}{b-a}\int_{a}^{b}f(t)dt) = \frac{1}{b-a}\int_{a}^{b}\frac{1}{b-a}\int_{a}^{b}f(x)dtds = \frac{1}{b-a}\int_{a}^{b}f(t)dt = (Tf)(x), \quad \text{all} \quad x \in [a,b].$$

Hence $T^2 = T$.

(b) Take $f, g \in L^2([a, b])$. We obtain

$$\langle Tf,g\rangle = \int_{a}^{b} \frac{1}{b-a} \int_{a}^{b} f(x)dx \cdot \overline{g(t)}dt =$$

$$= \int_{a}^{b} f(x) \frac{1}{b-a} \int_{a}^{b} \overline{g(t)}dtdx =$$

$$= \int_{a}^{b} f(x) \frac{1}{b-a} \int_{a}^{b} g(t)dtdx = \langle f,Tg\rangle$$

Hence $T^* = T$.

The statement is proved.

3. Let $h \in C([0,1] \times [0,1])$ be real-valued and

$$h(x, y) = h(y, x) > 0$$
 all $x, y \in [0, 1].$ (*)

Set $Tf(x) = \int_0^1 h(x, y)f(y)dy$, $x \in [0, 1]$, for $f \in L^2([0, 1])$. We want to show that T has an eigenvalue $\lambda = ||T||$ whitch is simple. (All eigenvalues λ satisfy $|\lambda| \leq ||T||$). Since the kernel is continuous and satisfies (*) we see that T is a compact, self-adjoint operator or $L^2([0, 1])$ and hence has an eigenvalue $\lambda \in \mathbb{R}$ with $|\lambda| = ||T||$. Since h > 0 we see that $\lambda = ||T||$ (see first and second observation below). It remains to prove that this eigenvalue is simple.

First observation: f eigenfunction for $\lambda \Rightarrow f \in C([0, 1])$ which follows from Lebesgues dominated convergence. Then

Second observation: f eigenfunction for $\lambda \Rightarrow f$ has constant sign, say $f \ge 0$, since if f changes sign, then

$$\lambda \|f\| = \|T\| \|f\| = \|Tf\| < \|T|f|\| \le \|T\| \||f|\| = \|T\| \|f\|.$$

Moreover we can conclude that f > 0 since h > 0.

Third observation: f_1, f_2 eigenfunction for $\lambda \Rightarrow f_1 = \alpha f_2$ for some $\alpha \neq 0$. To see this assume that it is false and set

$$s(\alpha) = |\{x \in [0,1] : f_1(x) - \alpha f_2(x) \ge 0\}|, \, \alpha \ge 0,$$

where |E| denotes the measure of the set E. Here s(0) = 1, $s(\alpha)$ decreasing and $\lim_{a\to+\infty} s(\alpha) = 0$. Also $s(\alpha) = 1$ for $\alpha \in [0, \tilde{\alpha}]$ for some $\tilde{\alpha} > 0$ since $f_1, f_2 \in C([0, 1])$ and $f_1, f_2 > 0$ on [0, 1]. Then there exists $0 < \alpha_0 < \alpha_1$ such that $1 > s(\alpha_0) \ge s(\alpha_1) > 0$. *)

This means that

$$f_1(x) < \alpha_0 f_1(x)$$
 on a set of positive measure
 $f_1(x) \ge \alpha_0 f_2(x)$ on a set of positive measure

but since also

 $f_1(x) \ge \alpha_1 f_2(x)$ on a set of positive measure,

together with $0 < \alpha_0 < \alpha_1$ and $f_2 > 0$ we see that

 $f_1(x) > \alpha_0 f_2(x)$ on a set of positive measure.

Then $f = f_1 - \alpha_0 f_2$ is an eigenfunction for λ (note that $f \neq 0$) that changes sign. Contradiction!

The statement follows.

*) It cannot happen that $\exists \beta > 0$ sth.

$$\begin{cases} s(\alpha) = 1 & \text{for } \alpha < \beta \\ s(\alpha) = 0 & \text{for } \alpha > \beta \end{cases}$$
 easy to see.

and if there exists a $\beta > 0 \ s$ th

$$s(\alpha) = 1 \quad \text{for} \quad \alpha \le \beta$$

$$s(\alpha) = 0 \quad \text{for} \quad \alpha > \beta$$

then $f_1 = \beta f_2$.