Matematik, CTH & GU

Tentamen i Funktionalanalys TMA401/MAN670

Hjälpmedel: Inga (inte ens räknedosa).

Personuppgifter: Namn, personnummer, linje, antagningsår.

Inlämning ska ske i uppgifternas ordning; v.g. sidnumrera!

Teoriuppgifter: 4,5,6.

Telefon: Peter Kumlin 035-52077 eller 0739603800

Datum: 2004-05-29 Skrivtid: fm (5 timmar)

1. Show that the following boundary value problem

$$\begin{cases} u''(x) - u(x) + \frac{1}{2}(1 + u(x^2)) = 0, & 0 \le x \le 1 \\ u(0) = u'(0) = 0, & u \in C^2([0, 1]) \end{cases}$$

has a unique solution.

(4p)

2. Let $H = L^{2}([a, b]), a, b$ finite, and

$$Tf(x) = \frac{1}{b-a} \int_{a}^{b} f(x) dx, \ x \in [a, b].$$

Show that T is a bounded linear operator $H \to H$ and that T is a projection.

(4p)

3. Let $h \in C([0,1] \times [0,1])$ be a real-valued function such that

$$h(x,y) = h(y,x) > 0$$

for all $x, y \in [0, 1]$. Set

$$Tf(x) = \int_0^1 h(x, y) f(y) \, dy, \quad x \in [0, 1]$$

for $f \in L^2([0,1])$. Show that the bounded linear operator T on $L^2([0,1])$ has an eigenvalue $\lambda = ||T||$ which is simple.

(4p)

4. State and prove the Orthogonal Projection theorem¹. Also the "Closest Point Property" theorem should be proved.

(5p)

5. Define the notion of weak convergence on a Hilbert space and show that every weakly convergent sequence is bounded.

(4p)

6. Show that for every compact self-adjoint operator T on a Hilbert space there exists an eigenvalue λ of T with $|\lambda| = ||T||$. Also show that there can be no eigenvalue μ of T with $|\mu| > ||T||$.

(4p)

Good Luck!! PK

¹Often referred to as the Orthogonal Decomposition theorem.