

10th April 2006

TMA401 Functional Analysis MAN670 Applied Functional Analysis 4th quarter 2005/2006

All document concerning the course can be found on the course home page: http://www.math.chalmers.se/Math/Grundutb/CTH/tma401/

Home Assignment 1

Problem 1: Let $(E, \|\cdot\|)$ be a normed space and let x, y be two vectors in E. Does

$$||x + y|| = ||x|| + ||y||$$

imply that one of the vectors is a scalar multiple of the other? Answer the question for l^1 and l^2 .

Problem 2: Assume that $p \in (1, \infty)$ and let q be defined by $\frac{1}{p} + \frac{1}{q} = 1$. Show that

$$\|\mathbf{x}\|_{l^p} = \sup\{\sum_{n=1}^{\infty} |x_n y_n| : \mathbf{y} \in l^q \text{ with } \|\mathbf{y}\|_{l^q} = 1\}.$$

Problem 3: Show that for every $g \in C([0,1])$ the mapping $T: C([0,1]) \to \mathbb{R}$ defined by

$$Tf = \int_0^1 f(t)g(t) \, dt$$

is linear and bounded. Moreover, calculate the operator norm ||T||. (All functions are considered to be real-valued and C([0,1]) is equipped with the sup-norm)

Problem 4: Consider the vector space l^1 and set $\|\mathbf{x}\|_* = 2|\sum_{n=1}^{\infty} x_n| + \sum_{n=2}^{\infty} (1 + \frac{1}{n})|x_n|$ for $\mathbf{x} = (x_1, x_2, \dots, x_n, \dots) \in l^1$. Show that $\|\mathbf{x}\|_*$ defines a norm on l^1 and that the vector space l^1 is a Banach space with this norm. Is this norm equivalent to the standard norm $\|\mathbf{x}\|_{l^1}$?

Problem 5: Let \mathcal{B} be a basis in an infinite-dimensional Banach space $(E, \|\cdot\|)$. Show that \mathcal{B} cannot be countable.

Problem 6: Let F be a compact set in a normed space $(E, \|\cdot\|)$ and let $T: F \to F$ have the property

$$||T(x) - T(y)|| < ||x - y||$$
, all $x, y \in F$ where $x \neq y$.

Show that T has a unique fixed point.

The solutions should be handed in at the latest on Friday April 28.