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1 A Note on Ordinary Differential Equations

1.1 Introduction
Let cg, ..., c, € C(I) be fixed, where I = [a,b], n > 2 and
cn(z) #0, forallz € 1.

Set
Lu = c,u™ + ...+ cou, u € C™(I).

The aim of this note is to show that the differential operator L with proper homo-
geneous boundary conditions has a so called Green’s function. This means that the
solution can be written as an integral with the Green’s function appearing as the
kernel function. Moreover we show that provided the operator L is symmetric the
solution has a spectral decomposition. This follows from the spectral theorem for

compact self-adjoint operators on Hilbert spaces ([1] Theorem 4.10.2).

1.2 Existence of Green’s functions

Our first result is the following fundamental existence theorem for ordinary differ-

ential equations.

Theorem 1.1. Assume ty € I and & = (&1,...,&,) € C™. Then for every f € C(I)
there exists a unique u € C™(I) such that Lu = f and (u(to), v (t), ..., u" VY (t)) =

€.

Proof. Set y1 =u, yo =, ..., Yy, = v

(!
Y1 =12
9 y;},—l = Un
L U=~y C’Z;lyn+éf
or, using the vector notation y = (y1,...,Yn),

y=F(ty),tel

1

. The equation Lu = f is equivalent to



for a vector-valued function F'. This function satisfies a so called Lipschitz condition
[F(t,y) = F(t,2)| < Kly—z[, te I, y,z € R",

for some K € R. Moreover note that the condition (u(ty), u'(to), ..., u™ V(ty)) = £
can be written y(ty) = £. Picard’s existence theorem ([1] theorem 5.2.5) in vector
form yields the result. ]

We introduce the notation
N(L) ={ue C"(I); Lu = 0}.
Clearly N (L) is a subspace of C™(I) since L is a linear operator.

Corollary 1.1. dim N (L) = n.

Proof. Let ty € I be fixed and define
Tu = (u(ty), ..., u™ V(t)), ue N(L).

The linear mapping T : N (L) — C" is a bijection from the previous theorem with

the range C". Hence we get dimN'(L) = dim C" = n. O
For arbitrary functions uy, ..., u, € N (L) we define the Wronskian for u,, ..., u,
by

uy (%) uo (%) Un(t)

ui(t)  ua(t) Up, (1)

Wt =| g o tel
n—1 n—1 n—1
O ORI ()

Theorem 1.2. The following conditions are equivalent:

1. W(t) #0 forallt € 1.
2. W(to) # 0 for some ty € I.

3. Ui, ...,uy, 18 a basis for the vector space N'(L).

Proof. (1) = (2): trivial.

(2) = (3): Take an u € N(L). Since dim N (L) = n it is enough to show that u is
a linear combination of uq, ..., u,.

Assume that ¢y € I is fixed and that W (¢;) # 0. From courses in linear algebra we
know that there exist a4, ..., a, € C" such that

> o (ur(to), - .-, ul V(o)) = (ulto), ..., ul™ (ko).
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The function v = Y] aguy, € N (L) satisfies the relation

(0(to), -, 0™ D(t)) = (ulto), - -, u" D (ty))
and by Theorem 1.1 we have v = u. Hence it follows that u € span {uy,...,u,}.

(3) = (1): Let t € I be arbitrary. We will show that W(t) # 0. It is enough to
show that the columns in the determinant W (t) are linearly independent.

Assume that aq,...,qa, € C" and that

> an(ur(t), ..., uy U (t) = (0,0,...,0).

The function v = Y7 apur € N(L) satisfies v(t) = ... = v®V(¢) = 0 and is
equal to the zero function by Theorem 1.1. However from > 7 ajus, = 0 it follows
that a1 = ... = o, = 0. Hence the columns in the determinant W (t) are linearly
independent. O

From now on we use the following notation:
aij,ﬁij,izo,...,n—l,j: 1,...,7’L

are complex numbers and

[y

Rju = [aiju(i)(a) + ﬁiju(i) 0),j=1,...,n.

%

Il
)

are boundary operators. Moreover we set

Ru = (Ryu,...,Ryu)

Cpl)={ue C™(I): Ru=0}

and
Lou = Lu, u € C}(I).

Theorem 1.3. The following conditions are equivalent:
1. The mapping Ly : CR(I) — C(I) is a bijection.

2. det{Rjurti<jk<n 7# 0 for every (alternatively for some) basis uq, ..., up i

N(L).

Proof. (1) = (2): If the determinant in (2) is zero then there are ay,...,a, € C
not all equal to zero such that

n
Z()ijjU,k:O,jzl,...,n.

k=1



The function v = 7 ayuy satisfies Lv = 0 together with Rv = 0. This yields a
contradiction since v # 0 and Lov = 0.

(2) = (1): Take an arbitrary f € C(I). It remains to prove that the equation
Lu=f
Ru=0

is uniquely solvable. Set w = u — v, where v € C"([) satisfies Lv = f (Theorem
1.1), we obtain the equivalent equation

Lw=0

Rw = —Rv.
With the ansatz w = Y| ajguy the determinant condition in (2) gives the existence
of a unique solution. O
Now let uy, ..., u, be a basis for the vector space N (L) and set

e(x,t) =Y ap(t)u(z)

where a,(%),...,a,(t) are chosen such that

eP(t,t)=0k=0,1,....,n—2
eV (1, 1) = 1/ca(t).

Note that the functions a;(%),...,a,(t) are continuous in ¢ due to Cramer’s rule.
Also observe that for fixed ¢ € I the function u(z) = e(x,t) is the unique solution
to the equation

Lu=0
{ ult) = ... =u2(t) =0, u™ V() = 1/cy(t)-

The function e(x,t), (z,t) € I x I, is called the fundamental solution to the
operator L. This function is of interest in connection with boundary value problems
that we will discuss next.

Theorem 1.4. Let uy,...,uy, be a basis for N (L) such that

det{Rjuk}lgj,kSn 75 0

and set G = Ly*. Then there erists a unique continuous function g(z,t), (z,t) €
I x I, such that

(G1)(e) = [ ala0150)cr
I
This is called the Green’s function g and can be constructed as follows:

1. Set é(z,t) = 0(x — t)e(x,t), where 0 is the Heaviside’s function
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2. Determine by, ..., b, € C(I) such that the function
gz, t) = &(z,t) + > b(t)ug()
k=1

satisfies
R(g(-,t))=0,a<t<b.

Proof. First set

i(z) = / &, ) f (0)dt,

I

i.e.

Repeated differentiations yield

i@ = [ "o (@, ) (1)t + ez, 7) (2)

=0

@) = [ @ o) f@)

=0

™ V() = / e D (@, 1) f(B)dt + D0, 0) ()
a —

and

™ (z) = /;C e (z, 1) f(t)dt + cn%x)f(x)

From this we conclude Lu = f. The function
u(e) = [ gtz (0
I

satisfies the equation Lu = f since

and the proof is completed.



The function g in Theorem 1.4 is called the Green’s function for the boundary

value problem
Lu=f
Ru = 0.

Problem 1: Determine the Green’s function for the boundary value problem

{ —((1+2)u'(z)) = f(z),0<z<1
u'(0) =0, u(1l) = 0.

Solution: The functions u;(z) = 1 and uy(z) = In(1 + z) form a basis for the
solutions to the homogeneous equation —((1 + z)u'(z))" = 0. Note that

1 ln2‘:_17é0'

so there exists a Green’s function. The fundamental solution e(z,t) = a; (¢)u1(z) +
as(t)uq(x) is given by
e(xz,t) = ai(t) + ao(t) In(1 + z)

and the constraints e(t,t) = 0, €}(t,1) = — 37 easily yield

e(z,t) =In(l1+1) — In(1 + z).
The Green’s function takes the form
g(z,t) =0(x —t)(In(1 +¢) — In(1 4+ x)) + b1 (t) + bo(¢) In(1 + x)

where

{ 9:(0,1) =0

g9(1,t) =0,
for 0 <t < 1. Hence we get

{ by(t) =0

from which we obtain

This finally gives
141 2
t)=0(xz—1)1 1 .
9(o,t) =0 = )ln T +In

Problem 2: Assume that A € C and f € C(]0, 1]). Show that the equation

u'(z) +u'(z) + AMu(z)| = f(z), 0<z <1
u(0) = u(1) =0, u € C*([0,1])

has a unique solution for || < e(e — 1).



Solution: We first determine the Green’s function for the equation

u'4+u' =F(x),0<z<1

u(0) = u(1) = 0.
The functions ui(z) = 1 and ug(z) = e form a basis for the solutions to the
homogeneous equation u” + u' = 0. With our standard notation we get

e(z,t) =1—¢*

and . .
e—e e—e
H=0(z—1t)(1—e" -
Note that
el —e e
t>x:>g(x,t):e_1(1—e ) <0
and
et_l 11—z
t<z=g(z,t)= 1(l—e ) <0
e_

which implies g < 0.
For every u € C([0, 1]) define

(Tu)(x) = /0 9(z, 1) (f () = AJu(®))dt, 0 <z <1
and observe that 7" maps C([0,1]) into {u € C?([0,1]); u(0) = u(1) = 0}. The

equation in problem 2 has therefore a unique solution iff 7" has a unique fixed point.
For u,v € C([0,1]) it holds that

|(Tu)(z) = (Tw)(z)| = \/0 g(z, ) Av ()] = Au(®)])dt] <

< I/\I/O (=g(z, ))[[o@)] = |u@)[|dt < |Alj(@)]|u — vl

where || ||oo denotes the max-norm for C([0,1]) and

iw=-[ (e, byt

Since j(0) = j(1) = 0 and j"” + j' = —1 it follows that

](x)_e—l o e—1e
and
e 1 1
=711 = Infl—-1<
I[%%{] ‘7<ne—1) e—1+n( e>_
1 1 1

< .
“e—1 e ele—1)
We conclude that

Al
Tu—-T 00 < - 00
70 = Toll < sl
and Banach’s fixed point theorem ([2]) implies that 7" has a unique fixed point for
Al <e(e—1).



1.3 Spectral theory for ordinary differential equations
The linear mapping Lg : C(I) — C(I) is called symmetric if
(Lou,v) = (u, Lyv), all u,v € C{(I),
where the inner product is given by the inner product in L*([)
b -
() = [ s,

Provided that Lg is a bijection and g is the Green’s function for the boundary value

problem
Lu=f
Ru=0"
we define
b
Gh@) = [ g, f e C
and

(G)() = / g, 0)f(t) dt, f € TA(T).

Theorem 1.5. Assume that Lo is a bijection. Then the following conditions are
equivalent:

1. Lgy 1s symmetric

2. G is self-adjoint

3. g(z,t) =g(t, ), z,t € I.

Proof. (1) & (2): Ly is symmetric iff
<L0Gfa Gh> = <Gfa LOGh): fa h € C(I)
which is the same as
(f,Ghy ={(Gf,h), f,h e C(I).

This is equivalent to

(f,Gh) = (Gf,h), f,h € L*(I)

since C([) is dense in L?(I) and G is a bounded linear operator on L?(I) ([1] example
4.2.4) whose restriction to C(I) is equal to G. Ly being symmetric is thus equivalent
to G' being self-adjoint.

(2) < (3): We first observe that

(G f)(z) = / ot 2) (1)t
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([1] example 4.4.6). This implies that G = G* iff

/ (9(a.1) — g(t.2) f(t)dt = 0, € (D).

Since g is continuous this means that g(z,t) — g(¢,2) = 0 for all z,¢ € I and so
g(xz,t) = g(t,x) for all z,t € I. O

Example 1: Consider the boundary value problem

uw(0)=u(1)=0,0<z <1.
This means that Lu = —u”, Rju = u(0) and Rou = u(l). The operator Ly is

symmetric since

1 1
(Lou,v) = / —u"vdz = [ — u"D](l] + / vw'v'de = {Rv =0} =
0 0

= (u',v")y = (v, u') = {Ru = 0} = (Lyv, u) = (u, Lyv)

for all u,v € C%([0,1]). This fact also follows from Theorem 1.5 by checking that
Ly is a bijection and that the Green’s function is given by

(2,1) = t(l—z), 0<t<z<1
IEV=Y 1-t)z, 0<z<t<1.

It easily follows that g(z,t) = g(¢,z). The details are left as an exercise.

Theorem 1.6. Assume that Ly is symmetric and is a bijection. Then the following
statements are true:

1. 0 is not an eigenvalue for Ly nor for G.

2. f 1is an eigenfunction for Lo corresponding to the eigenvalue p iff f is an
eigenvalue for G corresponding to the eigenvalue 1/p.

Proof. (1): N(Ly) = {0} implies that Ly has no eigenfunction corresponding to an
eigenvalue zero.

Now assume that f € N'(G). We will show that f = 0. For this take an arbitrary
¢ € Ci(I). We obtain

0=(0, Lop) = (Gf, Lop) = (f,GLo¢) =

Since C%(I) is dense in L?(I) we can conclude that f = 0.
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(2): =) From .
0 # f = G(Lof) = G(uf) = pGf = pGf

it follows that f is an eigenfunction to G corresponding to the eigenvalue 1 /.

<) We have
b
/ o, ) f(t)dt = if(:r) we. in I
Setting ’
b
h(z) = / o, O f(t)dt, v € I

it follows from Lebesgue’s dominated convergence theorem (see [3]) that h € C(I).
Moreover we have h(z) = f(x) a.e. in I and

hz) = p / g(z, Oh()dt, z € 1,

and hence we get Gh = ih. This yields

h = Lo(Gh) = L (1h> ~Lion
M H
Since h # 0 in C}(I), h is an eigenfunction to L, corresponding to the eigenvalue
p- Thus h, which is equal to f in L?(I), is an eigenfunction to Ly corresponding to
the eigenvalue p. This is the proper interpretation of the formulation in Theorem
1.6 2) and the proof of the theorem is complete. O

Theorem 1.7. Assume that Ly is symmetric and is a bijection. Moreover let (ji,,)7°
denote the eigenvalues for Ly counted with multiplicity and assume that (e,)$° is a
corresponding sequence of orthonormal eigenfunctions. Then (e,)$° is an ON-basis
for L*>(I) and the solution to the equation

Lu=f
Ru=0"~
where f € C(I), is given by

u=3"—(freen (in LA(1)).

Hn

Proof. The operator G is compact ([1] example 4.8.4) and the Hilbert-Schmidt the-
orem ([1] theorem 4.10.1) and Theorem 1.6 1) implies that (e,)$° is a complete
ON-sequence for L*(I). From

f = Z<f’ en>e

in L(I), Theorem 1.6 2) now implies that

u=Gf = Gf = Y (. ea)Gen = 30 fren)e
1 1
in L*(I). O
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Example 2: Consider the boundary value problem

Example 1 shows that the corresponding operator L is symmetric and is a bijection.
The eigenfunctions for Ly are obtained as the non-trivial solutions to the equation

and a simple calculation gives e,(x) = Asinnrz, where A # 0 and n = 1,2,.. ..
The sequence (v/2sin nrz)$° is therefore an ON-basis for L?([0, 1]).

Example 3: Wirtinger’s inequality states that

1 1
/0 ' (2) 2z > 7 /O u(z)2dz

for all u € C*([0,1]) that satisfies u(0) = u(1) = 0. To show this we first let
u(z) = Zan\/ﬁsin nrz  (in L*([0,1]))
1

where

1
an:/ u(z)V2sin nrzdz.
0

Furthermore we have

0

/01 u'(z)V2 cos nrads = [u(x)\/i cos nmc] 1—|—

1
+ mr/ u(x)V2sin nrads = nray,
0

and using the fact that the sequence (\/5 cosnmx) is an ON sequence, Bessel’s
inequality ([1] theorem 3.4.9) yields the estimate

1 o0
/ (@) Pz > S n?aa,
0 1
where the RHS is greater than or equal to
0 1
> ol =7 [ Ju(o)Pds,
T 0

This gives one proof for Wirtinger’s inequality.
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