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Peter Kumlin

Mathematics

Chalmers & GU

1 Exercises

This is a collection of problems that has appeared in the course. Some of them has
been given on written examinations during the last five years.

1.1 Vector spaces

Key words: vector space, linear combination, linear independence, basis, dimension

1. Check if the following sets with the proposed addition & and multiplication by
scalar ® defines vector spaces:

(a) E=Ry={r€R:2>0}and F =R with
c@y=uxy for all x,y e E

and
a@r=z% for all a € F,xz € E.

(b) E=C and F = C with
r@y=x+y for all x,y e E

and
ar = (Rea)z for all a € F, z € E.

2. Let = be an element of a vector space and A a scalar. Show that

(a) Oz =

(b) (= 1) =—z

(¢) A#0and Az =0 implies z =0
(d) = # 0 and Az = 0 implies A =0

3. Let E be a vector space such that there exist a basis with finitely many vectors.
Show that the dimension of E is uniquely defined.

4. Let z1,...,z, be a basis for a complex vector space E. Find a basis for E as a
real vector space.

5. Let x1,...,z, be a set of linearly dependent vectors in a complex vector space
E. Ts this set linearly dependent in FE if E is regarded as a real vector space?

6. Show that the functions f,(z) = e™®, n = 1,2,..., defined on R are linearly
independent.

7. Show that the functions fp(z) = cosnz, n = 1,2,..., defined on [—7,n] are
linearly independent.

o

In C[-1,1] consider the sets U and V consisting of odd and even functions in
C[—1,1] respectively. Show that U and V are subspaces and that UV = {0}.
Show that every f € C[—1,1] can be written in the form f = f; + f2, where
f1 €U and f2 € V, and that this decomposition is unique.
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Let E = C([0,1]). Show that

(a) if ag, k =1,...,n are n distinct points in [0, 1] then the functions
relz—a|, k=1,...,n

are linearly independent on E,
(b) the function

(z,y) = |z —y|
on [0,1] x [0,1] cannot be written as a finite sum
i vi(@)wi(y),
where v;,w; € E, i =1,...,n.
Prove that the vector space C([0,1]) has infinite dimension.
Prove that the vector space C*°(RR) has infinite dimension.
Prove that the vector spaces I? are infinite-dimensional for p € [1, 00).

Let 1° consist of all sequences (z,,)%° ;, ,, € R, where at most finitely many z,,:s
are different from 0. Show that I° is a vector space with the usual addition and
multiplication with scalar operations for sequence spaces. Also give a basis for
1.

Let F be a subspace of a vector space E. The coset of an element x € E with
respect to F' is denoted by = + F' and is defined to be the set

s+ F={x+y:ye F}.
Show that under the algebraic operations
(+F)+y+F)=(@+y)+F

alr+F)=az+ F

these cosets constitute the elements of a vector space. This vector space is called
the quotient space of E by F and is denoted by E/F. Its dimension is
called the codimension of F' and is denoted by codim F'. Now let E = R? and
F ={(0,0,2): z € R}. Find

(a) E/F

(b) E/E

(c) E/{0}
Show that C([c,d]) is a subspace of C([a,b]) (in a natural way) if [c,d] C [a, b)].

Assume M and N are subspaces of a vector space V. When is M |J N a subspace?

Let T : E — F be alinear mapping from the vector space E into the vector space
F. Show that A (T') and R(T) are vector spaces.

Show that linear mappings preserve linear dependence.

Let T be a linear bijection between two vector spaces E and F'. Assume that E
is finite-dimensional. Show that also F' is finite-dimensional and that dim E =
dim F'.

The convex hull S of a set S is defined as the intersection of all convex sets
containing S.

(a) Show that S is convex.
(b) If S C R and R convex, show that S C R.



(¢) A convex combination of elements z1, ..., z, of a vector space is a linear
combination Ya;z; with a; > 0 for each i and Ya; = 1. If R is a convex
set, show that any convex combination of a finite number of elements of R
belongs to R.

(d) Show that for any set S, S equals the set of all convex combinations of
finitely many elements of S.



1.2 Normed spaces

Key words: norm, convergence in normed space, equivalence of norms, open/closed
ball, open/closed set, closure of set, dense subset, compact set

1. Show that in any normed space

(a) a convergent sequence has a unique limit;
(b) if £, = = and y, — y then z, + y, = = + y;

(c) if £z, = z and A, =& X (An, A are scalars) then \,z,, — Az.

2. Let E be a normed space. Prove that
llzll < max(||z — yll, l= + yll), =,y € E.

Give an example of a normed space E and an z € E, such that equality occurs
for a suitable y # 0.

3. Let X be a vector space and let ||z|| and ||z]|«, z € X, be two norms on X. Is
max(||z|], ||z||«) a norm on X? Is min(||z||,||%||«) & norm on X?

4. Let x1,...,%, be linearly independent vectors in a normed space E. Show that
there exists a ¢ > 0 such that

larzs + ...+ anzn|| > c(Jaa| + - .. + |an)),

for all scalars a;, 1 < i < n. Conclude from this that any two norms on E are
equivalent, if F is finite dimensional.

5. Show that equivalent norms define the same opens sets and Cauchy sequences.

6. Show that the norms || ||; and || || are not equivalent in the vector space C([0, 1])
where

1
11l = / £()]dt

and

11l = mace 1500
for f € C([0,1]).

7. Given a set X. A function d : X x X — [0,00) is called a metric on X if d
satisfies the conditions

(a) d(z,y) =0iff z =y
(b) d(z,y) =d(y,z) for all z,y € X
(c) d(z,y) <d(z,z) +d(z,y) for all z,y,2 € X

Show that if E is a vector space with norm || - || then
dz,y) =llz —yll z,yek
defines a metric on E.

8. Let (X, d) be a metric space. Show that d; given by

_d(z,y)
dy(z,y) = T+ d(z.y) for z,y € X

is a metric on X. Show that the metrics d and d; yield the same open sets.

9. Give an example of a metric on a vector space that is not given by a norm.
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Show that the open balls B(z,r) in a normed space are open sets. Also show
that the closed balls are closed sets.

A subset A of a vector space F is called convex if
azx+(l—a)y€e A for all z,y € A, a € [0,1].

If E is a normed space show that the closed and open unit balls B(0,1) and
B(0,1) are convex.

Set ¢ : R? — [0, 00), where

$(z,y) = (Vlz[ + VIy))*.
Show that ¢ does not define a norm in IR2.

Let U be a bounded open convex and symmetric (i.e. U = (=1)U) set in R?
containing the origin and set

|(z,y)l| = inf{A > 0: (z,y) € AU},

where \U = {(Az, \y) : (z,y) € U} for A € R. Show that || || defines a norm on
R2. Conclude that all norms on IR? are given in this way.

Find a sequence (z1,Z2,-..) such that z, — 0 as n — oo but is not in any I?,
where 1 < p < oo. Find a sequence (z1,Z2,...) which is in {? with p > 1 but not
inll. s IP\19=0if p>q?

Give an example of a subspace in {? that is not closed.

Let 1 <7 < p < 2r and assume that the sequence (1, z2,...) satisfies
Yo in|z,|? < oo.

Show that (z1,z2,...) € I".

Show that

lim £ =0
imee =15 g

for all (z1,%2,...) € I%

Let f(z) =sinz for 0 < z < 1. Find a sequence of polynomials p,(z), 0 <z <
1, n € N of degree n, which converges to f in C([0,1]).

Show that every continuous function f on [0, 1] can be uniformly approximated by
polynomials, i.e. for each € > 0 there is a polynomial p such that max,co 17 | f(t) —

p(t)] < e. This statement is known as the Weierstrass approximation theo-

rem!.

Show that if A is dense in B and B is dense in C then A is dense in C.
Prove or disprove: if A is dense in B then for any set C', A[] C is dense in B C.

Let E be a normed space. F is called separable if there exists a countable dense
subset in E. Show that

(a) R is separable
(b) I? is separable for p € [1, 00)

1 Hint: One way to prove the claim is to use the so called Bernstein polynomials, more precisely set

Buf@) =g (| ) ety ta) s e n=1o,

Show that B, f — f in C([0,1]) as n — oo.
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(c) 1° is not separable?
(d) C([0,1]) is separable

Let E be a normed space and (z,)52; a countable dense subset in E. Given
€ > 0 show that

E\ {0} C U B(zn, €l|zyl])-

n=1
Show that every finite set is compact.

Show that R™ and B(0,1) N{(x1,-..,T,) : 21 < 1/2} are not compact sets using
the definition of compactness.

Construct a set in IR? which has finite area but is not relatively compact. Gen-
eralize to R™.

Prove that any finite-dimensional subspace of a normed linear space is closed.
If S is a relatively compact set, prove that its convex hull is relatively compact.

Let F' be a subspace of a normed space E and suppose zg € E \ F'. Furthermore
suppose o possesses a nearest point in F (i.e. there is a yo € F such that
ly — zoll > [lyo — wo| for all y € F).

(a) Prove that there is an z1 € E such that ||z1]] = 1 and |Jy — z1|| > 1 for all
y € F.

(b) In addition, suppose Span({zo} |J F)) = E. Show that every z € E possesses
a nearest point in F'.

(Riesz lemma) Suppose E is a normed space and let F' be a proper closed
subspace of E. Furthermore let € be a given positive real number. Show that
there is a vector x1 € E such that ||z1]| = 1 and ||y — z1]] > 1 — e for every y € F.

Let E be a normed space. Show that the unit sphere {z € FE;||z|| = 1} is compact
if and only if E is of finite dimension.

Let F be a closed subspace of a normed space E, where || - || denotes the norm.
Show that || - ||o defines a norm on the quotient space E/F if

e
I2llo = int Jja]

Let T be a mapping on a real normed space X satisfying
Tx+y)=T(z)+T(y) for all z,y € X.

Show that
T(Az) = AT(z) for all A\e Rand z € X

if T is continuous.

Let T : X — X be a mapping (not necessary linear) on a normed space X.
Moreover assume that there are real constants C, o, where a > 1, such that

IT(@) =TIl < Clle —yl|*, forall z,y € X.

Show that there exists a z € X such that T'(z) = z for all z € X.

2 Assume that it is separable and construct a function that has [*°-distance > 1 to each function
in the supposed countable dense set.



1.3 Banach spaces

Key words: Cauchy sequence, complete space, Banach space, convergent/absolutely
convergent series, linear mapping, null space of a linear mapping, range and graph
of a mapping, continuous mapping, bounded linear mapping, completion of a normed
space, LP-spaces

1. Prove that convergence in L?([0,1]) implies convergence in L' ([0, 1]).

2. For any n € Z set

_{vn 0<z<y
f"(”’)_{o L<z<l
Prove that f, — 0 in L'([0,1]) but not in L?([0, 1]).
3. Let f € L'(R). Can we conclude that f(z) — 0 for |z|] — oo? Can we find

a,b € R such that |f(z)| < b for |z| > a?

4. Which of the following sequences of real functions (n € N)

(@) fn=L1x0.n

(b) = X(n,n+1)
(c) fn = N XJo,1]
(d) fn = Xpjo—*,(j+1)2-*] Where 0 < j < 2% and n = j + 2F

converges to the 0-function

(a) uniformly on R
(b) point-wise on R
(¢) almost everywhere on R
(d) in LY(R).
Which of these modes of convergence implies which others?

5. Let f € LP(R) for p € [1,00) and A > 0. Prove the inequality

o e R: (7)) > A < (e,

where |A| denotes the (Lebesgue) measure of the set A C R.

6. Let f € C[0,1]. Show that
I£llp = [Iflleo for p — oc.

7. Consider the set of all rational numbers p/q € (0,1) with denominator ¢ < n;
call them 7,1, 7,2, ..,k (where K depends on n). Define a function g, by

gn(:L‘) = E{il‘ﬁn(x - Tnz'):

where ¢, (u) = 1—e"u for |u| < e™™, ¢n(u) = 0for |u| > e ™. Sketch the graph of
gn. Show that g, € C([0,1]), fol |gn|* dz — 0 as n — oo, and and g,(z) = xq(z)
for rational z.

8. Show that if (z,)32, is a Cauchy sequence and has a convergent subsequence
then ()32, is convergent.

9. Assume that (x,)%2, is a sequence in a Banach space such that for any € > 0
there is a convergent sequence (y,)2; such that ||y, — z,|| < € for all n. Prove
that (2,)52; is convergent. Give an example to show that the statement becomes
false if Banach space is replaced by normed space.
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Let I2° denote the vector space with all convergent sequences (z,)52; of complex
numbers equipped with the norm

[(@n)7Zallize = sup [2n].
n

Show that the space I° is complete.

Consider the vector space I and set |||, = 2|32 2, | + B2, (1 4 1)|z,| for
%= (T1,T2,...,%p,...) € 1. Show that ||x||. defines a norm on /' and that the
vector space I! is a Banach space with this norm. Is this norm equivalent to the
standard norm ||z||;?

Define C3} ([0, 1]) to be the space of continuously differentiable functions on [0, 1],

with norm || f|| = (fol(|f|2 +|f'?) dz)'/2. Show that this is a proper definition of
norm. Is this normed space complete?

What conditions must the function r satisfy in order that

71l = sup{|f(z)r(2)| : 0 <z <1}
should define a norm on the vector space C([0,1])?

Let BC([0,00)) be the set of functions continuous for z > 0 and bounded. Show
that for each a > 0, || flla = (J;* e=%|f(2)|? dz)'/? defines a norm on BC([0, c0)),
and || - ||o is not equivalent to || - || if 0 < b < a. What about the case a = 0?

Show that every finite-dimensional normed space is complete.

ink
Set fr(z) = snllg_zw, 0<z <1, k€ Z;. Prove that the series 32, fi converges

in C([0,1]).

Set for any n € Z, fo(x) = 2" — 2"t and gp(z) = 2" — 22" if 0 <2 < 1. Is
any of the sequences (f)2; and (g,)S2, convergent in C([0,1])?

Let M = {z € C([0,1]) : z(27") =0 all n € Z;}. Prove that M is a closed
subset of C([0,1]).

Let M = {(2n)52 € co: 52,27 "2, =0} C o = {(xn)02 €1 : limy o0 Ty =
0}. Show that M is a closed subspace in ¢o.

Let E denote a normed space of finite dimension and let eq,...,e, be a basis of
E. Set

fz) = X0 zrer, v = (z1,...,21) € R™
Show that f is continuous. Conclude from this that any two norms on FE are

equivalent.

Let E be a normed space and assume that E # {0}. Prove that there do not
exist bounded linear operators A and B on F such that AB— BA=1.

Set (Az)(t) = z'(t) and (Bz)(t) = tz(t), 0 < t < 1, for z € C*°(]0,1[). Prove
that AB — BA = I. Is it possible to find a norm on C*(]0, 1) such that A and
B are bounded operators with respect to this norm3?

Let E and F' be normed spaces and T : E — F a continuous mapping. Show
that the T'(A) is compact in F if A is a compact set in E.

Let T : E — R be a continuous mapping from a normed space E. Moreover let
A be a compact set in E. Show that T attains its maximum and minimum on A.

Let A: X — X be a continuous mapping and assume Az # 0 for all z € X.
Show that the mapping B : z — Az/||Az|| is continuous on X.

3Hint: Show that A"B — BA™ =nA”~! forn =1,2,...
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Find the norm of the linear functional
(@,y) »x =Ty
on R? with respect to the norms IP for p = 1,2 and oo.

For what values of the constant a does

1
u / zu(x) dz
0
define a mapping C([0,1]) — C? For what values of a does it define a mapping
L2([0,1]) —» C?
Show that the equation

{ (Af) (@) = [T fy)e > ¥dy, z€eR
f € L?R)

defines a bounded linear operator A on L?(R).

Prove that any linear mapping from a finite-dimensional vector space into an
arbitrary vector space must be continuous.

Let E be a normed space and L a linear functional on E. Furthermore, suppose
there is a unit vector zo € E such that ||zo — y|| > 1 for every y € N'(L). Prove
that |Lzo| = ||L]|.

Find all linear mappings of C™ into C™ for n,m € Z.

Let A, B be two linear operators defined on a vector space E. Show that E must
be infinite-dimensional if

AB =1 # BA,
where I denotes the identity mapping on E. Give an example of such operators

A and B on a vector space E.

Let FE be a vector space and f : E — R a linear mapping. Suppose zp € E and
f(zg) # 0. Prove that any x € E may be written as £ = y + axg, where « is a
scalar and y € N (f). Show that this representation is unique.

Let f and g be two functionals on a vector space such that A'(g) C N (f). Prove
that f = ag, where « is a scalar.

Show that for any linear operator A on a n-dimensional vector space F, there are
scalars «g, . . . , a2, not all of them zero, such that

2
n k
is the zero operator.

Let B and C be linear operators on a finite-dimensional vector space E and
suppose N'(B) C N(C). Show that there is a linear operator A on E such that
C=AB.

Let E be a vector space of finite dimension and suppose A : E — E is a linear
operator. Prove that N'(A) = {0} if and only if R(A) = E. Show that this is not
true for vector spaces of infinite dimension.

Let E be a real normed space and let T : E — R be a linear functional. Assume
that N'(T') # E. Show that for all z € E

inf o -yl = 22,
yeEN(T) 17|
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Show that the operator T on C([0,1]), where

(Th)(X) =tf(t), t€[0,1],
is a bounded linear operator on C([0, 1]).

Let A,, A, B,,, B be bounded linear operators on a Banach space X. Show that
A, = A and B, = Bin B(X, X) implies 4, B, = AB in B(X, X).

Let A : X — X be a bounded linear operator on a Banach space X. Show
that £52 LA™ converges in B(X, X). Denote its sum by e”. Show that for any
integer n > 0, ()" = e™. Show that e? = I where O is the zero operator.
Show that e is always invertible (even if A is not) and its inverse operator is
e~ . Show that if AB = BA, then eAt8 = e4eP. Show that eAtB = edeB is

not true in general.

Let A, B be invertible bounded linear operators on a Banach space X with
[|[B7Y|||A — B|| < 1. Show that if

Ax =10

By=1»

1—||B~'|[|A - Bl

then

llz —yll <

Moreover also show that

IB~I”A - B
— 1B-1[[[A - B

e =yl < < ol

Let T be a bounded linear operator from a normed space E onto a normed space
F'. Assume that there is a constant C' > 0 such that

1Tz > Cll=|

for all z € E. Show that the inverse operator 7~! : F — E exists as a mapping
and is a bounded linear operator.

Let T : C([0,1]) — C([0,1]) be defined by

t
= [ f)ds
0
Find R(T) and T~' : R(T) = C([0,1]) satisfying T~'T = I (jo,1))- Is T~' linear
and bounded?

The operator A : C([0,1]) — C([0,1]) is defined by the equation

t
(An®=r@+ [ feds o<t
0
Prove that N'(A4) = {0} and R(A4) = C([0,1]). Finally determine the inverse A=1
of A and show that A~! is a bounded operator.

Let A be an r X n-matrix with real entries. Consider A as a linear mapping from
R™ into R". Calculate or give an upper bound for the operator norm of A in

(a) B, 1Y)
(b) B(I>,1%)

Let F be a subspace of a vector space E and let f be a functional on E such that
f(F) is not the whole scalar field of E. Show that f(x) =0 for all z € F.

10
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Let k € Zy and set Ly(f) = [y f(t)sinktdt for all f € C([0,7]). Prove that
[|Lk|| = 2 for all k.

Let
1/2

A dt—/ f) dt, f e c(o,1]).

0
Prove that ||L|| = 1. Prove that there does not exist any f € C([0, 1]) such that
I£ =1 and [Lf] = 1.

Let E be a normed space and A : E — C a bounded linear functional. Suppose
there exists a vector g € E such that ||zo]| = 1 and ||zo—z|| > 1 for all z € N (A).

Show that |Azo| = ||A]. Moreover, let F = {z € C([0,1]) : [\/*z(t)dt =
f1/2 t)dt}. Show that if zg € C([0,1]) and ||z — zo|| > 1 for all x € F then

ol > 1.
=/{iﬂmm
0o VT

defines a bounded linear functional on C([0,1]).

p= [ g5

defines a bounded linear functional on L?([0,1]).

Show that
Show that

Let T be defined by T'(x) = (z2,%3,---,Tnt1,.-.) forallx = (z1,22,...,Zn,...) €
I2. Show that T € B(I?,1?) and calculate ||T|.

Let f(z) be a complex-valued function on Ry = {z : £ > 0} and let Lf be the
function defined on Ry by
oo
= / fy)e ™ dy.
0

Show that L is a bounded? linear mapping L?(Ry) — L*(Ry) with ||L|| < /7.
Show that L is not a bounded® linear mapping LP(Ry) — LP(Ry) for p # 2.

(Non-orthogonal projections) A bounded linear operator P on a Banach space X
will be called a projector® if P? = P.

(a) Show that I — P is a projector if P is. Show that if z € R(P) then Pz = z,
and if z € R(I — P) then Pz =0.

(b) Show that for any projector P on a Banach space X, the range R(P) of P
is a closed subspace, and is therefore itself a Banach space.

(c) Show that any z € X can be uniquely expressed in the form z = u + v with
u € R(P) and v € R(I — P).

Let T be a linear mapping from a normed space V' into a normed space W. Show
that the range R(T) is a subspace of W. Show that the null-space (or kernel)
N(T) is a subspace of V. If T is bounded, is it true that T(V') and/or N(T) is
closed?

Show that if (x§"),x§"), ...) = (z1,22,...) in [P, then :1:( ™ g, in R for all k €

N. If mi") — 1, in R for all k € N, is it true that (z §"),x§"),...) - (21,29,...)
in [P?

AHint: write f(y)e ¥ = (f(y)e v*/2yl/4)(e~¥®/2y~1/4) and use Holder’s inequality.

5Hint: Try f(z) = e~ 2

8Compare projections that are self-adjoint and satisfies P2 = P. By projection we mean orthogonal
projection.

11
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Let T be the linear mapping from C*°(R) into itself given by T'f = f'. Show
that T is surjective. Is T injective?

Consider the mapping T' from C[0, 1] into itself, given by

t
Tf(t) = / £(s)ds.

We assume that C[0, 1] is equipped with the sup-norm. Show that T is bounded
and find ||T'||. Show that T is injective and find T~ : T(C[0,1]) — C[0,1]. Is
T~ bounded?

Let T be a linear operator T : L?(R) — L?(RR) satisfying that f > 0 implies that
Tf > 0. Show that

IT(fDI = (1T 1]
for all f € L?(R). Show that T is bounded.

Define, for h € R, the operator 7, on L?(IR) by
hf(z) = f(z — h).
Show that 73, is bounded.

Let V be a Banach space and let T € B(V,V) such that T~! exists and belongs
to B(V,V). Show that if ||T|| < 1 and ||T~!|| < 1, then

1Tl =T~ =1,
and ||T £ = ||| for all f € V.

Consider the operator

Af(w)z%/ow\/{l%dt, z € [0,1]

whenever this expression makes sense. Show that Af € L*[0,1] if f € L?[0,1],
p > 2. Find the operator B = A2 i.e. find the kernel k(z,t) such that

Bf(z) = / " ke, 0 f (1) de

for f € LP[0,1], p > 2. Show that B : LP[0,1] — L*[0,1], 1 < p < oo is bounded.
Solve the equation

(I-A)f(z)=1
formally by a Neumann series, and express f as

f(z) = g(z) + Ah(z)

where g and h are known functions. Insert and show that this formal solution is
a solution.

12



1.4 Fixed point techniques

Key words: contractions, Banach’s fixed point theorem, Brouwer’s fixed point theorem,
Schauder’s fixed point theorem

1. Show that the Banach fixed point theorem is valid for metric spaces (X,d) as
follows: Let (X,d) be a complete” metric space and let F be a closed set in X.
Assume that T : F' — F' is a contraction mapping on F. Then T has a unique
fixed point.

2. Consider the metric space (X,d), where X = [1,00) and d the usual distance.
Let T : X — X be given by

2 + z
Show that T is a contraction and find the minimal contraction constant. Find
also the fixed point.

3. Let T be a mapping from a metric space (X, d) into itself such that

d(T(x),T(y)) < d(z,y)

for all z,y € X, z # y. Show that T has at most one fixed point. Show® that T
not necessarily have a fixed point.

4. A mapping T : R — R satisfies a Lipschitz-condition with constant & if
IT(z) — T(y)| < klz —y|
for all z,y € R.

(a) Is T a contraction?

(b) If T is a C'-function with bounded derivative, show that T satisfies a
Lipschitz-condition.

(c) If T satisfies a Lipschitz-condition, is 7' then a Cl-function with bounded
derivative?

(d) Assume that |T'(z) — T'(y)| < k|z — y|* for some a > 1. Show that T is a
constant.

5. Let X be a Banach space and let T,.S be two mappings from X into X (not
necessarily linear). Assume that 7S = ST and that T has a unique fixed point.
Show that S has a fixed point. What can be said if T" has more than one fixed
point?

6. Let F' be a compact set in a normed space X and let T' : F' — F have the property
IT(@) -TWI <llz—yl, alz#yekF
Show that 7" has a unique fixed point.
7. Let X be a Banach space and T a mapping on X satisfying
IT(z) =TIl > Kllz -yl allz,y € X,

where K > 1. Assume that 7'(X) = X. Show that T has a unique fixed point.

"see footnote to Baire’s theorem below
8Hint: e.g. consider T(z) = z + % for z € [1,00).
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10.

11.

12.

13.

14.

15.

We consider the vector space R™ with /'-norm and a mapping 7 : R® — R"
given by Tz = Cx + b, where C' = (¢;;) is an n x n-matrix and b € R™. Show
that T is a contraction if

Y% leijl <1 for all j=1,2,...,n
If we instead use the [2-norm, show that T is a contraction if

Y 1E 1|Cz1| <L

Use Banach fixed point theorem to find a root (given to four decimal places) of
the equation
z? —sin®z —-1=0

in the interval [1,v/2].

Suppose 0 < L < 1/(v/5 —1)/2. Show that there exists a unique u € C([0,1])

such that
/ V1+ (z —y)?cos(u(y))dy + sin(e™), 0 <z < L.

Show that the equation

4
(z) = / V1+ (z—y)?cosu(y) dy + sin(7re_4z2)
0
has a unique solution in C([0, p]) for p > 0 small enough. Give an upper estimate
on p?

Suppose A € C. Solve the equation

{ u(@) = A [, zyuly)dy = f(z) 0<z<1
u € C([0,1])

where f € C([0,1]) is a given function.
Suppose A € C. Solve the equation

{ u(z) = A fy zyu(y)dy = fx) 0<z<1
u € C([0,1])

where f € C([0,1]) is a given function.

Suppose f € C([0,1]). Prove that the following equation possesses a unique
solution where

{ u(z) =5 [y “uly)min(z,y)dy = f(z) 0<z<1
u € C([0,1]).

Let P be the set of all ordered pairs f = (f1, f2) of real-valued continuous func-
tions on [0,1]. Show that P is a Banach space if we define addition and scalar
multiplication in the obvious way, and define || f||p = max{|| f1||oo, || f2]lco }- Show
that the coupled integral equations

u(y)
=\ fy € iy

_ o o(y)
= 1 Jy € sty

have no nontrivial solutions if |\| < 1/2e and |p| < 1/e.

14



16.

17.

18.

19.

20.

21.

Consider the equation®

3u(z) =z + (u(z))? + /0 |z — u(y)|1/2 dy.

Show that it has a continuous solution u satisfying 0 < u(z) <1for 0 <z < 1.

Let S be the set {f € C([0,1]) : || fllec <1, f(0) =0, f(1) =1} and the operator
T :S — S defined by (T'f)(z) = f(?). Show that S is a closed bounded convex
set and that T is a continuous operator with no fixed point.

Let ¢o denote the vector space
co = {(zn); €1%°: lim =z, =0}
n— 00

with the norm

l(@n)nz1lleo = max|:L‘n|

)ne
Define T : ¢y — ¢ by T'((zn)32,) =

{ 1=30 +|I(wn)n 1)
=(1-

)mnfly n Z 2

(zn)nzl ’ where

Show that 7" maps the closed unit ball in ¢y into itself and that

IT(z) = Tl < llz—yll

for all z,y, z # y, in the unit ball in ¢g. Moreover, show that T have no fixed
points in the unit ball in ¢g.

Let T denote the mapping (z,y) = (z + v,y — (z + y)®) on R?. Show that T
is an odd mapping, i.e. T(—z,—y) = —T'(z,y), and that (0,0) is the only fixed
point of T'. Moreover show that (2, —4) and (—2,4) are fixed points of T?. Can
T be a contraction?

T denote the mapping (z,y) — (y'/3,2'/3) on R%. What are the fixed points of
T? What happens when you iterate, starting from various places in R? (find out
by numerical experiments)? In what regions is T' a contraction?

Let T be a contraction on a Banach space E, i.e.
Tz - Ty|| < allz —yl|

for all z,y € E for some a € (0,1), and assume that S is a mapping on E such
that ||Tx — Sz|| < A for all z € E for some constant A > 0. Show that

n

1—
|T"z — S™xz|| < A 1 a
for n € Z,. Show that if S has a fixed point y then
1
—yll < A———
o= yll < Ay
where z is the unique fixed point for T'. Finally show that if y,, = S™yo then
1 n
llz = ynll < m()\ + a"{lyo — Syoll),

provided z is the fixed point for 7. What is the significance of this formula in
applications?

9Hint: Krasnoselskii’s fixed point theorem
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22. Consider the equation

2(t) - / (b, 9)a(s)ds = o(t), 1€ [0,1] (1)

where k € C([0,1] x [0,1]) and v € C([0, 1]). Moreover assume that

max |k(t,s)| < c.
(t,5)€[0,1]x[0,1]

Show that (1) has a unique solution z € C([0,1]) provided |u|c < 1 using the
iterative sequence

Ty (t) = v(t) + /L/O k(t, s)z,(s) ds. (2)

Next set 1
Sa(t) = / k(t, 8)a(s) ds
0

and
Znt+1 = uSzn.

Choosing zg = v show that (2) yields the so called Neumann series
z= lim z, = v+ uSv+ p?S%v + P S3v + ...
n—oo
Show that in the Neumann series we can write
1
S™(t) = / kmy(t,s)v(s)ds, n=1,2,3,...
0

where the so called iterated kernel k() is given by

1 1
k(n)(t,s)=/0 /0 k(0 bt ) - - B(tn_r, 8) b1 - dn_s.

Show that the solution of (1) can be written

z(t) = v(t) + /L/OI E(t, s, p)v(s) ds

where ~ '
k(ta S, N) = E;?;OI"’J k(j+1) (ta 8)'

23. Use the methods in the above problem to solve

z(t) — ,LL/O cx(s)ds = v(t), te€0,1]

where ¢ is a constant.

24. (a) A nonlinear version of the Volterra operator is defined as follows: (Lu)(z) =
fow K(z,y)f(y,u(y)) dy where K and f are continuous functions, and | f(y, u)—
f(z,v)] < N|u—v| for all u,v,z,y where N is a constant. Then L maps
C([0,T1) into itself for any T' > 0. Give an example to show that L is not a
contraction on C([0,T]) with the usual norm |Ju|| = sup |u(z)].

(b) Show that for any a > 0, ||u|ls = sup{e **|u(z)| : 0 < z < T} defines
a norm on C([0,7]) which is equivalent to the usual norm. Deduce that
C([0,T]) with the norm || - ||, is a Banach space.

(c) Set M = max{|K(z,y)| : 0 < z,y < T}. Show that ||Lu — Lv||, <
MN/a(1 — e *T)|ju — v||, for all u,v € C([0,T]). Deduce that for any
T > 0 the integral equation u = Lu + g, where g is a given continuous
function, has a unique solution.
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Let f: R = R be a Cl-mapping and assume that |f'(z)] < ¢ < 1 for all z € R.
Show that g : R — R is surjective , where g(z) = z + f(z).

Let X and Y be Banach spaces and let T : X — Y be a mapping having the
following property: There exists a number C' > 0 such that for any z,y € X we
have
IT(z+y) —T(x) -T(y)| < C.
(a) Show that there exists a unique additive!®mapping!! S : X — Y such that
T — S is bounded in the sup-norm.

(b) If T is continuous, prove that S is continuous and linear.

(Newton’s iteration) Let f be a real C2-function on an interval [a,b], and let
¢ € (a,b) be a simple zero of f. Show that Newton’s method

— _ f(xn)

Frt = T =0 =

is a contraction in some neighborhood of £.

(Halley’s iteration) In 1694 Edmund Halley, well-known for first computing the
orbit of the Halley comet, presented the following algorithm for computing roots
of a polynomial. Show that if f is a real C®-function on an interval [a,b], and if
¢ € (a,b) is a simple zero of f then the algorithm

_ . f(zn)
Tnt1 = T(‘r”) =In — fl(xn) _ (@) fan)

f(zn)

is a contraction in some neighborhood of £.

For each of the following sets give an example of a continuous mapping of the set
into itself that has no fixed points:

(a) the real line R

(b) the interval (0, 1]

(c) the set [0,1]U[2, 3]

Give an example of a mapping of the closed interval [0, 1] into itself that has no
fixed points (and hence is not continuous).

Let f : S — R be a continuous function, where S' denotes the unit circle
centered at the origin. Show that there is an z € S* such that f(z) = f(-=z).
This result is called the Borsuk-Ulam theorem for the circle.

Let A and B be two bounded plane figures. Show that there is a line dividing
each into two parts of equal area.

Let K be a closed disc in the plane IR? and let C be its boundary circle. Assume
that the function f is a continuous mapping K — R? such that f|c = I and that
g is a continuous mapping K — K. Show that there is a point p € K such that

f(p) = 9(p)-

Prove Baire’s theorem [ Let X be a complete!? metric space.

105 additive means that

S(z +y) = S(z) + S(y)

for all z,y € X.

1Hint: Show that S(z) = limy— o0 2%T(Q"w) does the job.

12For the definition of a metric space X with metric d see exercise 6 in the section "normed spaces”.
We say that a set A C X is open if for each z € A there is an r > 0 such that {y € X : d(z,y) < r} C A.
A set B C X is closed if its complement B¢ is an open set. Given a subset E of X. The intersection
of all closed sets in X containing E is a closed set, is called the closure of E and is denoted E. The
union of all open sets in X contained in F is an open set, is called the interior of E and is denoted by
E°. We say that a set E in X is dense in X if E = X and we say that F is nowhere dense if (E)° = 0.
Finally, a metric space is called complete if for each sequence {zn} C X such that d(zn,zm) — 0 as
n,m — oo there exists an x such that d(z,,z) — 0 as n — oo.
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35.

36.

37.

38.

39.

40.

41.

42.

a) If {U,}°2, is a sequence of open dense subsets of X, then (°—, U, is dense
n=1 n=1
in X.

(b) X is not a countable union of nowhere dense sets.]

Use Baire’s theorem to show the existence of f € C([0,1]) that is nowhere differ-
entiable. [Hint: Consider the sets E, of all f € C([0,1]) for which there exists
xg € [0,1] (depending on f) such that

|f(z) = f(o)| < |z — o
for all z € [0,1]. Show that E,, is nowhere dense in C([0,1]).]

Prove Banach-Steinhaus theorem [Suppose X is a Banach space and Y is a
normed space and that A C B(X,Y). Moreover assume that

sup ||Tz|| < 0o for all z € X.
TeA

Then
sup ||T] < o0.]
TeA

Use Banach-Steinhaus theorem!? to show the existence of a continuous function
on [—m, 7] such that its Fourier series diverges at 0.

Prove Perron’s theorem, i.e. prove that an n x n-matrix, whose elements are
all positive, has at least one positive eigenvalue and that the elements of the
corresponding eigenvector are all positive.

A linear integral operator with a positive kernel is a natural analogue of the
positive matrix in Perron’s theorem. Use Schauder’s theorem to prove that an
integral operator with positive continuous kernel has a positive eigenvalue.

Let T : B(0,1) — B(0,1) where B(0,1) is the closed unit ball in R™ centered at
the origin. Assume that

IT(z) =T < |z -yl

for all z,y € B(0,1) where | - | denotes the Euclidean distance. Show that T has
a fixed point using

(a) Brouwder’s fixed point theorem

(b) Banach’s contraction theorem!4

Prove Arzela-Ascoli’s theorem [Let A C C([0,1]). It follows that that A is
compact if and only if

(a) (uniform boundedness) there exists an M < oo such that

sup  |f(z)| <M
z€[0,1], feA

and

(b) (equicontinuity) for all € > 0 there exists a > 0 such that

lf(z) = fly)| <e
for all z,y € [0,1] with |z —y| < J and all f € A.]

Let M be a bounded set in C([0, 1],not necessarily compact. Show that the set
of all functions F(z) = [y f(t)dt with f € M is relatively compact.

13Hint: Let T}, f denote the n—th partial sum of the Fourier series of f.
“Hint: Consider T, = (1 — )T
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43.

44.

45.

Prove Sperner’s lemma [Let A be a closed triangle with vertices vy, v2,v3 and
let T be a triangulation of A. This means that 7 = {A;};cr where A; are closed
triangles with the properties

(a) A= UieI A;
(b) For every i,j € I, i # j, we have

0 or
A; ﬂ Aj; = ¢ common vertex or
common side

Moreover let V denote the set of all vertices of the triangles A; and let ¢: V —
{1,2,3} be a function that satisfies the following conditions:

(a) c(v;) =i fori=1,2,3
(b) v € V(Nwiv; € {i,j} for i,j € {1,2,3} where v;v; denotes the line segment

between v; and v;.

Then there exists a triangle A; such that the vertices of the triangle take different
values.]

Prove Brouwer’s fixed point theorem in a special case!® (n=2): Let T : K — K
be a continuous mapping where K denotes the set {(z1,22,23) € R®: X3 x; =
1, z; > 0 all i}. Then T has a fixed point.

Let (a,)22, be a bounded sequence, i.e. (a,)52, € I°°. Show, by using Banach’s
fixed point theorem!®, that there exists a bounded sequence (z,)%>; that solves
the equations

Tp1+4T, +2pt1 =an, n=12,...,

where 2o = 1.

15 Consider a sequence of finer and finer triangulations of K and make use of the function ¢ : K —
{1,2, 3} defined by

¢(x) = min{s : (T'(x)); < z;}

where x = (z1,22,23). Note that the function ¢ is well-defined provided T" has no fixed point, and
apply Sperner’s lemma.
16 Consider the mapping

1
Tn > Z(an_mn—l —Zn+1), n=1,2....
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1.5

Hilbert spaces

Key words: inner product, inner product space, polarization identity, Hilbert space,
orthogonality, strong/weak convergence, orthonormal sequence, Gram-Schmidt or-
thonormalization process, complete sequence, orthogonal complement, convex set, or-
thogonal projection and decomposition, separable Hilbert space

10.

Let z1,..., 2, be complex numbers. Show that
|21 4+ ..+ 20| < VAl|(21,- -5 20)]]-
Let z,y be vectors in a complex vector space with inner product, and assume

that
lz + yll* = llzl1* + [lylI*.

Does this imply that (z,y) = 07
Let H be a Hilbert space. Show that
llz —zll = llz — yll + lly — =]

if and only if y = az + (1 — @)z for some « € [0,1].

. Let || - || denote the norm in a Hilbert space. Prove that
llz +yll llz = yll < llzll* + [lyI*
and
llz +ylI* = llz —ylI* < 4llz|l lyll-
Let E be an inner product space. Show that for z,y € E, x L y if and only if

llaz + Byl|? = ||az||* + ||By||? for all scalars a and 3.
Show that C([0,1]) (equipped with the sup-norm) is not an inner product space.

Prove that any complex Banach space with norm ||- || satisfying the parallelogram
law is a Hilbert space with the inner product

1 . . . .
(@9} = lle+yl* = llz = ylI” +illz + iyl* - ille — iyl]”]

and ||z||* = (z, ).

Let x1,22,...,2xn be linearly independent vectors in an inner product space,
. 1

with N = n-2|- ) Show that there are orthonormal vectors y1,vs2,---,Yn

such that

Yi = EjeAi)\jmj, 1= 1,2,. ey N,
where A1, As, ..., A, are disjoint subsets of {1,2,..., N}.

Let T : E — E be a bounded linear operator on a complex inner product space.
Show that T = 0 if (Tz,z) = 0 for all z € E. Show that this does not hold in
the case of real inner product spaces.

Suppose z, — = and y,, — vy in a Hilbert space H and «a,, — « in C. Prove that
@) zhn+yn—z+y
(b)

(€) (Tn,yn) = (x,9)
(d) [lznll = [l

ApTy = QT
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Suppose z, — = and y, — y in a Hilbert space H and o, — a in C. Prove or
disprove that

(@) Tn+yn ST +y
(b)

() (Tn:yn) = (z,9)
(d) [lzall = [l

w
b) apx, — azx

Let (en)2; be an ON-basis for H. Assume that the sequence (f,)2, in H
satisfies the conditions ||f,|| = 1 and f, € {ei,es,...,en}*t forn = 1,2,....
Show that f, — 0.

Suppose z,, — z in a Hilbert space H. Show!” that there is a positive constant
M such that
sup ||zn|| < M.
n

Let (z,,)52; be a bounded sequence, i.e. sup, ||z,|| < M, in a separable Hilbert
space H. Show that there is a subsequence (z,, )32, and an z € H such that

w
Ty, — L.
What happens if H is not separable?
Suppose z, — z in a Hilbert space H. Show that there exists a subsequence
(%, )52, of (zn)52; such that

1 .
EE?ZI'TTLk — 1 H7

da m — oo.

Consider R™ as a Hilbert space with the standard inner product and the corre-
sponding norm, i.e. the Euclidean metric. Assume that S is a closed convex set
in R™ and that for each x € R"™ there exists a unique y € S such that

llz — yll = sup ||z — z[|.
z€S

Show that S consists of a single element.

Let (ex)j—; be a sequence of vectors in a Hilbert space H. Assume that ||ex|| =1
for all k. Show!® that

Shet (@, ) < llaf|*(1 + (E%EI(ekaez)\?)%)

for all € H. Note that if (ex)7_, is an ON-sequence in H then the statement
is called Bessel’s inequality.

Assume that M is a closed subspace of a Hilbert space H. Let {z,}32; be a
sequence converging to x in H. Moreover let =, = y, + 2, n = 1,2,..., be
the orthogonal decomposition of z, with y, € M and z, € M*. Show that
yn converges to y and z, converges to z where x = y + z is the orthogonal
decomposition of z.

Consider the inner product space X of the vector space C([0,1]) with the inner
product of L2([0,1]). Set S = {f € C([0,1]) : f(z) = 0 for € [0, 1]}. Show that
S is a closed subspace of X and calculate S*. Is X = S + S+?

What is the orthogonal complement of all even functions in L?([—1,1])?

17Hint: Use Banach-Steinhaus theorem above
18Hint: Note that X|(z,ex)|? = (z, X(x, e ex)-
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

Let M be the subset {(z,)%%; : a3, = 0 for all n € Z;} in I2. Give M~ and
ML,

Let A be a subset of a Hilbert space. Show that
A++ = SpanA.

Let A and B, ) # A C B, be subsets of an inner product space. Show that

(a) B+ c At
(b) ALLL = AL,

Let M # () be a subset of a Hilbert space H. Show that Span M is dense in
H if and only if M+ = {0}. By the span of a set .A we mean all finite linear
combinations of the elements in the set A.

Let ()52, be a complete orthonormal sequence in a Hilbert space H. Show
that

(z,y) = Ezo:1<$7$n><yaxn>
for all z,y € H. Also show that the reverse implication is true.

Let (2,,)52; be an orthonormal sequence in a Hilbert space H. Show that (,)%2;
is complete if and only if the closure of the span of (z,)%2; equals H.

If (z,)52, is a complete orthonormal set for a vector subspace S of a Hilbert
space H, then any z € S can be expressed in the form z = X¢,z,. Conversely, if
Yy = Xcnn, does if follow that y € S?7 What happens if S is a Hilbert subspace
of H?

Given a convergent infinite series, one cannot in general rearrange the terms; if
the sequence (v,) is a rearrangement of a series (u,), and Yu, = U, then Xuv,
need not equal U, unless Yu,, converges absolutely. However, prove that if (e;)
is a complete orthonormal set and (f,,) is a sequence obtained by arranging (e;)
in a different order, then (f,) is a complete orthonormal set, and therefore the
series z = X{x, e, )e, can be rearranged.

(A space with no complete ON sequence) The set of all periodic functions R — C
is clearly not a vector space. But if we consider the set M of functions which are
sums and products of finitely many periodic functions, we obtain a vector space.
The elements of M are called almost-periodic functions. It can be proved
that for any f,g € M,
Y e p—

li — t)g(t) dt

Jim (7 [ r0a@ay
exists and defines an inner product on M. Verify that any two members of the
family of functions e**t, where a is real, are orthogonal in the inner product space
M. Deduce that M has no countable basis.

Find an orthonormal basis of the subspace Span{l + z,1 — z} of L([0,1]).

Let P and ) denote orthogonal projections onto two subspaces in a Hilbert space.
Prove that ||P — Q|| < 1.

Suppose S is a closed convex subset of a Hilbert space H and let Ps denote the
orthogonal projection onto S, i.e. for any x € H, Pg(x) denotes the point in S,
which is nearest to z. Prove that

1Ps(z) — Ps(y)ll < llz —yl| for all 2,y € H.

In the vector space R™ use the norm ||u|| = X|u;|. Let z = (1,—1,0,...,0) and
let E be the subspace {(¢,t,0,...,0) : t € R}. Setting y; = (¢,¢,0,...,0) for the
elements of E, show that all y; with |¢| < 1 have the same distance from z, and are
closer to = than any y; with |¢| > 1. This shows that the best approximation in a
subspace can be non-unique in normed spaces, though in Hilbert spaces they are
unique. Deduce that the norm X|u;| cannot be obtained from any inner product.

22



34.

35.

36.

37.

Let H = {f € L%([0,1]) : ' € L*([0,1])}, and for f,g € H define

(f,9) = 1(0)g(0) + / F()g(s) ds.

Take L? here to be the space of real functions. Show that H is a Hilbert space.
For each t € [0,1] define a function Ry € H by Ri(s) = 1 + min(s,t), where
min(s,t) denotes the smaller of s and ¢. Show that (f, R;) = f(¢) for all f € H.

Now consider the following problem in approximation theory. The interval [0, 1]
is divided into subintervals given by numbers 0 = ¢; <ty < ... < t, = 1. Given
a function f, we wish to approximate it by a piecewise linear function F' which
is linear in each subinterval. Show that the set of all such functions F' is the
subspace spanned by {R;, : i = 1,2,...,n}. Show that the best piecewise linear
approximation to f in the sense of the norm corresponding to the above inner
product in H is the piecewise linear function F' which equals f at the points ¢;.

Suppose A : H — H is a linear mapping that satisfies
(Az,y) = (x, Ay) all z,y € H.
Prove that A is a continuous mapping.'?

Let (z,)52; be a complete ON-sequence in a Hilbert space H and let (y,,)22, be
another ON-sequence such that

S llzn — yn“2 <L
Show that the ON-sequence (y,)32; also is complete.

Let (u,)32; be an orthonormal sequence in L%([0, 1]). Show that the sequence is
an orthonormal basis if

w—
Eff:ﬂ/o un(t)dt|* = z, for allz € [0,1].

19Hint: Apply Banach-Steinhaus theorem
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1.6

Linear operators on Hilbert spaces

Key words: bilinear functional, quadratic form, coercive functional, adjoint operator,
self-adjoint operator, inverse operator, normal operator, isometric operator, unitary
operator, positive operator, projection operator, compact operator, finite-dimensional
operator, eigenvalues/eigenvectors, resolvent, spectrum, unbounded operators

10.

. Let A be a self-adjoint operator on a Hilbert space H and assume that R(A) = H.

Show that A : H — R(A) is an invertible mapping,.

. Assume that A, - A in B(H,H), where H is a Hilbert space. Show that A is

self-adjoint if all A,, are self-adjoint.

Let A be a linear compact operator on a Hilbert space H. Prove that I + A is a
compact operator if and only if H is finite-dimensional.

Let B be a bounded linear operator on a Hilbert space. Prove that
R(B)* = N(B*)

and
R(B) = N(B*)*.

Let A be a compact linear operator on a Hilbert space H. Prove that R(I — A)
is a closed subspace?® of H.

Let A be a compact linear operator on a Hilbert space. Prove that

R(I —A) = N(I — A"t
Assume that z,, — z in a Hilbert space H. Moreover assume that A : H — H is
a bounded linear mapping. Does it follow that Az, — Az?

Show that for every compact operator A on a Hilbert space H there exists a
sequence (A,)% ; in B(H, H) such that dimR(A,) < oo for n = 1,2,... and

n=1

An = A in B(H, H).

Show that the integral operator on L%([0,1]) with kernel K satisfying

1 1
/ / K (2,4)? dedy < oo
0 0

is compact?!.
(a) Suppose f € L'*(R) and set
()0 = [ ae)f(t-s)ds, g€ L(R).

Prove that A defines a bounded linear operator on L?(IR) with an operator
norm < || f]]:.

(b) Suppose h > 0 and set

t+h
o) = g7 [ a5, g€ I*(®),

Prove that B defines a bounded linear operator on L*(R) with norm 1.

20Hint: Let y € H and suppose z,, — AT, — y. Show that one can pick z,, to belong to N(I — A)J-
for every n. Show that {z»} must be bounded.
21Hint: Approximate K by K(z,y) = X7 -1pi(2)q; (y). Alternatively approximate K by continuous

K and use Arzela-Ascoli’s theorem.
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11.

12.

13.

14.

15.
16.

17.

18.

19.

Let k € L%([0, 7] x [0,7]) and consider the linear mapping
T : L*([0,7]) — L*([0,7])
given by .
Tf@) = [ ko) i) dy. €0
for f € L*([0,7]). One standard estimate for the operator norm for 7 is

171 < 11kl z2([0, 7] x[0,7])-

Prove?? that also the following estimate is true:
N 1 " 1
171 < sup [ Ibtaldi)bsup [ (kG| do)?.
T 0 Y 0

Finally apply these two estimates to the kernel function k(z,y) = cos(z — y), i-e.
calculate the two upper bounds for the operator norm.

Set
(Ag)(t) =tg(t), g€ L*([0,1]).

Prove that A defines a linear bounded self-adjoint operator on L?([0,1]) without
eigenfunctions.

Find*® a mapping f : [0,1] — L?([0,1]) such that f(t1) # f(t2) for all t; # t2
and such that the vectors f(¢1) — f(t2) and f(t3) — f(t4) are orthogonal for all
t1 <ty <tz <ty.

The operator A on L%([0,1]) is defined by

“n@= [ feydy, 0<a<t.
0
Find A*.
Show that an operator of rank n can have at most n eigenvalues.

Set

G = [~ s germ).

Prove that A defines a linear bounded and self-adjoint operator on L?(RR). Finally
prove that A is not a compact operator.

Set
TN@) = [ sine+)f@)dy, 0z <
0
Find the norm of T regarded as an operator on

(a) the Banach space C([0,7])
(b) the Hilbert space L([0, 7]).

Give an example of a non-self-adjoint operator on a Hilbert space H whose range
is H and which is not invertible.

Let T,: E— H,n=1,2,..., be a sequence of bounded linear operators from a
normed space E into a Hilbert space H. We say that

(a) (Ty,)22, is convergent in B(E,H) (or convergent in norm in B(E,H) or
uniformly operator convergent) if (T3,)32, is convergent in B(E, H);

22 Apply the formula ||g|| = sup|p=1 [{9,h)| to Tf. Also the estimate ab < Sa® + ib2 for all
a,b € R and ¢ > 0 can come in handy.
23Hint: Let f(t) be the characteristic function for the set [0,] for ¢ € [0, 1].
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20.

21.

22.

23.

24.

(b) (Tn)$, is strongly operator convergent if (T, (z))52, converges in H for all

z € E;
(¢) (Th)52, is weakly operator convergent if (T5,(x))52; converges weakly in H
for all z € E.

Show that a) = b) = c¢). Moreover, let A,,, B,, be operators on [? defined by

An((ml,xQ,...)) = ( 0,...,0 7$n+17wn+27---)
——r

n positions

and
Bn((xl,wg,...)) = ( 0,...,0 ,1‘1,1‘2,...).
N—_——

n positions

In what modes do these sequences of operators converge?

A bounded linear operator A on a Hilbert space H is called unitary if A*A =
AA* = 1. Show that if A is unitary then ||Az| = ||z|| for all z € H, i.e.
unitary operators do not change lengths. Deduce that all eigenvalues of unitary
operators have modulus 1, and eigenvectors belonging to different eigenvalues are
orthogonal. Show that all unitary operators are invertible.

If B is a self-adjoint operator, show that e*? is unitary.

A bounded linear operator A on a Hilbert space H is called a Hilbert-Schmidt
operator if the series ¥;;|(Ae;, f;)|*> converges whenever (e;) and (f;) are or-
thonormal bases for the Hilbert space H. Show that this sum equals ¥;|| Ae;||?,
and deduce that it is independent of the choice of bases (e;) and (f;).

Show that the set of Hilbert-Schmidt operators on a given Hilbert space H is a
vector space, and that ||A|lzs = (X;]|Ae;||?)!/? is a norm on that space. Show
that ||A||gs > ||A|| where ||A|| is the usual operator norm. Give an example in
which [|A||gs > ||A]l-

If A and B are Hilbert-Schmidt operators, show that X(Ae;, Be;) converges ab-
solutely for every orthonormal basis (e;), and is independent of the choice of (e;).
Show that one can define an inner product [A, B] on the space of Hilbert-Schmidt
operators on H by [A, B] = ¥(Ae;, Be;).

If A and B are integral operators on L?([0,1]) with continuous kernels K and
L respectively, show that they are Hilbert-Schmidt operators, and [4,B] =
J [ K(s,t)L(s,t)dsdt.

A bounded linear operator A on a Hilbert space is called normal if it commutes
with its adjoint, AA* = A*A. Every self-adjoint operator is obviously normal.

(a) Show that if the function K (z,y) satisfies K (z,y) = K(y,x), then for any
real d, the operator u — du + 4 fol K(z,y)u(y) dy on the complex Hilbert
space L2([0,1]) is normal.

(b) Show that if B,C are commuting self-adjoint operators, then B + iC is
normal.

(c) Prove the converse of (b), i.e. for any normal operator A, there are self-
adjoint commuting operators B, C such that A = B +iC.

Show that a compact normal operator has a complete set of orthogonal eigenvec-
tors.

Given an infinite matrix of numbers k;;, 4,5 = 1,2..., we say that the double
series ¥;;|ki;|* converges if for each i the series ¥;|k;;|? converges to a number L;
such that ¥;L; converges, and for each j the series X;|k;; |2 converges to a number
M; such that ¥;M; converges. If ¥;;|k;;|* converges and k;; = kj; for all 4, j, we
define an operator K on the space I> by (K=z); = £52, kijz;. Show that K is a
compact self-adjoint operator {> — 12, and write out what the spectral theorem
says in this case.
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25.

26.

27.

28.

29.

30.

31.

32.

Let (p;) and (g;) be two complete orthonormal sets for L?([0,1]). Let H be the
space of square-integrable functions of two variables on the square 0 < z,y < 1,
with inner product fol fol flz,y)g(z,y) dedy.

(a) Show that the set of functions p;(x)g;(y) is orthonormal in H.

(b) Show that if ¢ € H and fol fol é(z,y)pi(z)q;(y) dedy = 0 for all ,j, then
¢ =0.

(c) The set of functions p;(z)g;(y) is labeled by two integers and is therefore
countable, and can be arranged in a sequence. Prove that this sequence is
a complete orthonormal sequence.

Given a function K such that K (z,y) = K (y, ) and fol fol |K (z,y)|? dedy exists,
let A; and ¢; be the eigenvalues and orthonormal eigenfunctions of the integral
operator on L?([0,1]) whose kernel is K. Show that

the convergence being with respect to the norm in the space H in the previous
problem. Show also that

1 1
/ / K (2, )] dedy = Si| P
0 0

K : R? — C is a piecewise continuous function, and K(z,y) = K(y,z). The
integral operator A on L2([0, 1]) with kernel K has eigenvalues \; and orthonormal
eigenfunctions ¢;.

(a) Show that the series Y.c,¢,(z) converges absolutely and uniformly if the
constants satisfy ¥|c,/A\,|? < 0.

(b) Show that if f is in the range of A, then the series X(f, ¢,,) ¢, (x) converges
absolutely and uniformly to f on [0,1]. Is this still true if we remove the
condition that f lies in the range of A?

Above it was shown that the eigenvalues A; of an integral operator with square-
integrable kernel are such that X|\;|* converges. Is this true for compact self-
adjoint operators in general?

Let T be the linear mapping on L?([0,1]) defined by

1
Tf(z) = / (2 +9)f () dy, 0<z<1.

Show that T is bounded and calculate ||T'|.

Let H be a Hilbert space. Prove or disprove the statement: Every bounded linear
mapping on H preserves orthogonality.

Let X be a separable Hilbert space and 7' : X — X a compact linear operator.
Show that T can be approximated by finite rank operators in B(H), i.e. there
exist a sequence of finite rank operators T,, on H such that T,, — T in operator
norm.

Let (e,,)5%; be an ON-basis for a Hilbert space H and assume that T : H — H
is a bounded linear operator on H such that

552, [Teall? < oo.
Show that if (f,)52; is another ON-basis for H then
ST fall? = 20241 Tenl|.

Moreover show that
ITI1? < B2y I Tenll.
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34.

35.

36.

37.

38.

39.

40.

41.

Set Ry = {z € R:x > 0}. For f € L?>(R;) define

Mf(z) = %/wa(t)dt, 2> 0.
Show that
M :L*(Ry) = L*(Ry)

is a bounded linear mapping on L%(R,), calculate the operator norm of I — M
and, finally, determine the adjoint operator of M. Here I denotes the identity
operator on L?(R,).

Let X be a Banach space and T : X — X a compact®* linear operator. Show
that there exists a constant C such that for every y € R(I + T) there exists a
xz € X with y = (I + Tz such that

llzll < Cllyll-

Let a,, n =1,2,3,... be non-negative reals and set
C={x€l?:x=(2,)%1, |Zn| < an alln}.

Show that if C is a compact subset in 2 then a,, — 0 as n — oco. For what
sequences (a,)32; is C compact?

Let T be defined on L*([0,1]) by Tf(z) = [, f(y)dy. Show that T is a com-
pact operator on L2([0,1]) with o(T) = {0}. In particular prove that T has no
eigenvalues # 0.

Let A be the linear mapping on L?([0,1]) defined by

Af(z) = / (z— 9 f)dy, 0<z<1.

Calculate
(a) A"
(b) [IA]l-

Let T be a positive, self-adjoint, compact operator on a Hilbert space H. Show
that
(Tx,z)" < (T"z, ) - (x, )21,

for all positive integers n and all z € H.

Let A be the linear mapping on L2([0,1]) defined by

Af(z) = / (z—y)fy)dy, 0<z<L.

Calculate
(a) A*A
(b) [IA[l-

Let T be a self-adjoint operator on a Hilbert space H. Assume that T is compact
for some integer n > 2. Prove that 7' is compact.

Let H be an infinite-dimensional Hilbert space and let 7' : H — C be a bounded
linear functional # 0. Calculate the dimension for the subspace N (T)* of H.
Give an example of a Hilbert space H and a functional T as above.

24Exactly the same definition as for a linear operator on a Hilbert space
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43.

44.

45.

46.

47.

Let T be a self-adjoint, positive, compact operator on a Hilbert space H with
[IT|| < 1. Give an estimate?® for

I3T* — 2072 + T?||.
Let S be a dense subset in a Banach space X. Moreover let (7,)%2 ; be a sequence
of linear operators on X. Assume that

(a) lim,—, o Ty, x exists for every z € S and
(b) there exists a C' > 0 such that

T || < Cll|l
for all n and all z € X.
Show that lim,,_, ., T}, = exists for every = € X.
For x = (...,Z_2,T_1,T0,T1,T2,...) € 12 define

(Tx), = Tpy1 +2xp—1 + 10z, n=2k,kecZ
" 2Zpt1 + Tt + 10z, n=2k+1,ke”Z

Which of the statements below hold true?

(a) T is a bounded linear operator on /2
(b) T is self-adjoint

(c) T is an invertible operator?®.

Let T be a bounded linear operator on a Hilbert space H where dimR(T") = 1.
Show that for every y € R(T), y # 0, there exists a uniquely defined x € H such
that

Tz={z,xz)y, z€ H.

Moreover show that
N[ = Izl - llyll-
Apply this fact for calculating the operator norm for the mapping

rr0)= [ e fwdn fertpal

Set
Au(z) = / "tV cos(z + y)u(y)dy, =z € [0,7].
0

Calculate the operator norm for A and see if A is a compact operator on the
Banach space

(a) C[0,],
(b) L2[0,].

Let T be a normal linear operator on a Hilbert space H, i.e. T is a bounded linear
operator that commutes with its adjoint operator 7%, more precisely

TT* =T"T.
Show that
(a) |Tz|| = ||T*=|| for all z € H;

25Better than the trivial estimate

13774 — 2073 + 72|| < 3||T)|* + 20/|7)|® + ||T)? < 24.

26i.e. T~ € B(1?).
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49.

50.

ol.

92.

93.

54.

95.

(b) X is an eigenvalue with the eigenvector z for T' iff X is an eigenvalue with
the eigenvector z for 7.

Let h € C([0,1] x [0,1]) be a real-valued function such that
h’(may) = h(:’/:m) >0
for all z,y € [0,1]. Set

1
Tf(a) = [ .S ) dy, o €01
0
for f € L?([0,1]). Show that the bounded linear operator T' on L?(]0, 1]) has an

eigenvalue A = ||T'|| which is simple.

For u € C[0,1] set

11—z
(Au)(z) = / o — yluly) dy, = € [0,1].

Show that A is a bounded linear operator on the Banach space C|0,1] and cal-
culate the operator norm || A4||.

Let H be a complex Hilbert space and A a bounded linear operator on H with
the property
(Az,z) € R

for all x € H. Prove that A is self-adjoint.
Calculate the operator norm for A : C[0,n] — C[0, 7] defined by

(Af)(@) = / "1+ =) £(y) dy.

Also calculate the operator norm for B : L?[0, 7] — L?[0, 7] defined by

BA)@) = [ @+ e ) dy
The functions are complex-valued.
Let T be defined for x = (z,)52; by
(Tx)p =nxn, n=1,2,...

Show that D(T) = {x € I’ : Tx € 1%} is a dense subset in [ and that T is a
bounded operator?” in 12, i.e. x, € > forn=1,2,...,x, -y il?, Tx, > zil?
implies that y € D(T) and Ty = z.

Consider the integral operator

27
Af(z) = / cos(z —y)f(y)dy, 0<z<2m.

Show that A defines a bounded linear operator on the Banach spaces (real-valued
functions)

(a) C[0,2n]

(b) L2%[0,2x].
Also calculate the operator norm || A|| for one of these spaces.

Consider the mapping

1 1 1
($1,ZL‘2,.’IJ3,...) — (SL'1,§(IL'1 +.’L‘2),5(.’IJ1 + o +.’l?3),...,ﬁ(£l’:1 + x5 + .'L'n),)

Show that this is a bounded linear mapping on 12 that is not surjective.

Let T be a bounded linear operator on a Hilbert space H with ||T'|| = 1. Assume
that there exists a g € H such that Txy = 9. Show that we have T*xq = xo.

27Use e.g. the fact that T is a symmetric operator.
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1.7 Ordinary differential equations

Key words:Green’s function, symmetric operators

1. Calculate the Green’s functions for the boundary value problems

a){1W@)+UW)=f@)

u'(O):u'(g) :0,0§m§g

b { 016

u(0) = 2u(1) = vw'(0) = 2u/(1) =0,0<z < 1

u'"(z) + u(z) = f(z)
Q{um%wmmzmogng

1

o { 1@ =16
u(0) = u"(0) = u(1) = u"(1) = 0

2. Show that (using the notations from ”A note on ordinary differential equations”)
the boundary value problem
{ Lu=f

Ru=c
is uniquely solvable for every f € C™(I) and ¢ € C™ iff

det{Rjuk}lsj,kSn # 0.

3. Show that the Green’s function g(z,t) in Example 1 on page 9 in A note on
ordinary differential equations” satisfies g(z,t) = g(t,z) and hence the operator
G : L*([0,1]) — L*([0,1]) defined by

@nw = [ sensoa
is self-adjoint.
4. Show that the problem
{ u"(z) + u(z) = € + Re u(z), 0 <z < /2
u'(0) = u'(7/2) =0, u € C%([0,7/2])
has a unique solution.
5. Set (Lu)(zx) = u® (), 0 < z < 1. Show that Lg is symmetric if
(a) Riu = u(0), Rou = u'(0), R3u = u(1l), Ryu = u'(1)
(b) Riu = u(0), Ryu = u"(0), Rsu = u(1), Rqyu = v (1).

6. Assume that (Lu)(z) = —u"(z) + u(z), 0 < z < 1 and that Riu = u(0) — u(1)
and Rou = u'(0) — «/(1). Show that

(a) Ly is bijective

(b) Lo has both 1- and 2-dimensional eigenspaces.

7. Assume that (Lu)(z) = (p(z)u'(z))' — q(x)u(z), a < z < b, where p € C*(I) and
g € C(I) are real-valued and p(z) > 0, a < z < b. Moreover assume that

Riu = ajju(a) + asiu'(a)

and
Rou = ,812u(b) + ,822u'(b)
where (a11,a21) € R?\ {0} and (B12, B22) € R*\{0}. Show that Lg is symmetric.
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10.

11.

12.

13.

14.

15.

Assume that the integral operator

b
(@Qf)(@) = / 4(@,9) fW)dy, a <z <,

defined on L?(I) with an L?- kernel q is self-adjoint and has the eigenvalues
(Ai)$°, counted with multiplicity, and corresponding eigenfunctions (e;)$°

(a) Use Bessel’s inequality to show that

) b
S Nles(@)]? < / gz, ) Pdy.
1 a

(b) Show that
0 b b
Z/\?S/ / lg(z,y)*dzdy.
1 a a

(¢) Show that
2,9) =3 Nei@)eily) 1 LI x I).
1
Prove that
min i sm n+1 x sin n—f—l ™
(z,y) n—O 2 e 2 Y
in L2([O, 1] % [0,1]).

Show that the series in Theorem 1.7 in ”A note on ordinary differential equations”
converges uniformly to w.

Prove that there is no function u defined in the interval [0, 1] such that

zu'(z) +u(z) =0, 0<z <1
{ u(0) = 1.

Prove the existence of solutions u of the following boundary value problem

—u"(z) =3(1 +u?(z)), 0<z <1
{ u(0) = u(1) =0, u e C?([0,1]).

Prove the existence and uniqueness of solutions of the following boundary value
problem

u(z) ,
- 77+sm ), 0<z<1
W'(a) = Ty gy + o), 0 <
w(0) = u(1) =0, u e C*([0,1]).
Prove the existence and uniqueness of solutions of the following boundary value

problem
{ " (z) = |z + u(z)], 0 z<1
u(0) — 2u(1) = w/(0) — 2u/(1) =0

Let A € R be different from 0.

, u€ C?(0,1]).

(a) Solve the equation

{ ! ()2 + %u"(x) 1, 0<a<1
u(—=1) =u(1) =0, u e C?*([0,1]).

(b) Let u(z) = u(z, \) be the solution in part (a). Calculate limy_, o u(z, ).

32



16.

17.

18.

19.

20.

21.

22.

23.

24.

Show that the following boundary value problem

" __u(z)
U($)+U($)—m7 0<z<

u(0) =u(3) =0, weC*([0,3])

e

Show that the following boundary value problem (almost the same as problem 1)

" _ @)

u(0) =u(§) =0, weC*([0,3])

o

<z<

e

has a solution for all A € R.

Prove the existence and uniqueness of a solution to the following boundary value
problem
u"(z) + u'(x) = arctanu(z?), 0<z<1
{ u(0) = u(1) =0, u € C*([0,1])

Consider the differential equation

—u'" = JeY, O<zr<l,
u(0) = u(l) =0.

(a) Formulate the boundary value problem as a fixed point problem u = T,
where T is an integral operator.

(b) Set B = {u € C([0,1]) : ||Jullco < 1}. Show that T maps B into itself
provided 0 < A < Ag for g sufficiently small. Give a numerical value on Ag.

(c) Show that the differential equation is uniquely solvable in B with A chosen
as in (b).

Show that there exists a unique C?-function u(z) defined on [0, 1] with »(0) =
u(1) = 0 such that
u"(z) — cos?u(z) =1, z€[0,1].

Show that there exists a unique C?-function u(z) defined on [0, 1] such that
u(0) — 2u(1) = «'(0) — 2'(1) =0

and
4" (z) — |u(z) + z| =0, =z €[0,1].

Show that there exists a unique C?-function u(z) defined on [0, 1] such that
u(0) = u/(0) = 0 and
1
u"(z) — u(z) + 5(1 +u(z?) =0, ze€l0,1].

Show that there exists a unique C?-function u(z) defined on [0, %] such that
u'(0) =u'(§) =0 and

1 1 s
n _ ) ™
u'(z) + u(z) = 5 s1nu(2;c ), z€][0, 2].

Let H be a Hilbert space. Apply the spectral theorem to find a H-valued solution
u(t) to the initial value problem

du
—(t Au(t) =0, t>0
L (0) + Au(r) =0, 1>,

U(O) =wug € H,
where A is a compact self-adjoint positive operator on H. Show that

lu@Il < lluoll, ¢>0.
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25. Let f € C([0,1]) and A € R. Show that the equation

W'(2) +u'(2) + Mu(@)] = f(@), @ €[0,1]
u(0) = u(1) =0, u € C2([0,1])

has a unique solution provided |A| is small enough.
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1.8 Calculus of variation

Key words: Gateaux derivative, Fréchet derivative, convex functions, stationary point,
Euler-Lagrange equation, variational problems with constraints

1. Show that if h € C([a,b]) and f: h(z)v'(z) dz = 0 for all v € C1([a,b]) N {v(a) =
v(b) = 0} then h = constant on [a, b].

2. Let m € N. Show that if g € C([a,d]) and fabg(x)v(x) dx = 0 for all v €
C™([a, b)) N{v™ (a) = v®) () =0k = 0,1,...,m} then g = 0 on [a, b].

3. Set E = C'([a,b]) and let 6I(y;v) denote the (Gateaux—)variation

dI(y;v) = lim > (I(y + ev) — I()),

e—0 €

where y,v € E. Calculate 61 (y;v) for

(@) I(y) = [*((w(@))? + 2(y'(2))?) do
(b) I(y) = [*(e*y(x) — 3(y'(@))*) da + 2(y/ (a))?
= [Py(@) da/ [P (1+ (y'(2))?) da

4. Give the Euler-Lagrange equation for F(z,y,2) = 2zy —y? +3zy?, (z,y,2) € R3.
Find the stationary solutions for F' above on D = C1([0,1]) N{y(0) = 0,y(1) =
1}.

5. Assume f: R"™ — R is differentiable. Show that
[tz + (1 —t)y) <tf(z) + (1 -8)f(y) for all z,y € R, ¢ € (0,1),
i.e. f is a convex function, if and only if

f@) 2 fly) + V() - (& —y)) for all z,y € R 3)

Moreover interpret (3) geometrically.

6. Let I : D — R be a functional defined on a subset D of a vector space. We say
that I is convex on D if

Iy +v) —I(y) > 6I(y;v) for all y,v € D.

Now set D = C'([a,b]) N{y(a) = «, y(b) = B} for a, 3 € R. Moreover, assume
that F € C?([a,b] x R?) and that F(z,-,-) : R?> — R is a convex function for

all z € [a,b]. Show that I(y f F(z,y(x),y'(x)) dz is convex on D and that
yo € D is a minimizer on D prov1ded

Ly P (e 0(a), v @) = By, o), () for € (a,D).

7. Let D be a subset of a vector space and let I, G, ...,Gn be functionals defined
on D. Show that if there are some constants Aq, ..., Any and a vector yg € D such
that yo is a minimizer of I=T+MGi+...+AvGx on D then Yo is a minimizer
of Ton D(\{y € D:Gj(y) =Gj(y), j=1,...,N}.

8. Minimize I(y fo 2dz on D = Cl([O 1])ﬂ{y( ) = y(1) = 0} when
restricted to the set {y € Cl([O 1)) ) = fo V2 dr = 1}.

35



9.

10.

Consider the minimizing problem

inf I
Inf Ir (y),

where D = C?([a,b]) {y(a) = a1,y'(a) = as,y(d) = B1,y'(b) = B} for
ai,as,B1,B2 € R, F € C3([a,b] x R?) and

b
In(y) = / F(z,y(2), ' ()" (¢)) da.

Give a necessary condition (= Euler-Lagrange equation) on yo to be a minimizer
on D.

Consider the functional I : C([a,b]) N{y(a) = a,y(b) = B} = R, where I(y) =
f: F(y(z),y'(z))dx and o, 8 € R. Assume that y¢ is a minimizer on D. Show
that

F(yo(z),y0()) — yo(x)Fy (yo(2), yo(x)) = constant

on (a,b).
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