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1 A Note on Ordinary Differential Equations

1.1 Introduction
Let cg, ...,c, € C(I) be fixed, where I = [a,b], n > 2 and
cn(z) #0, forallz € 1.

Set
Lu = cu™ + ...+ cou, u € C"(I).

The aim of this note is to show that the differential operator L with proper homo-
geneous boundary conditions has a so called Green’s function. This means that the
solution can be written as an integral with the Green’s function appearing as the
kernel function. Moreover we show that provided the operator L is symmetric the
solution has a spectral decomposition. This follows from the spectral theorem for

compact self-adjoint operators on Hilbert spaces ([1] Theorem 4.10.2).

1.2 Existence of Green’s functions

Our first result is the following fundamental existence theorem for ordinary differ-

ential equations.

Theorem 1.1. Assume ty € I and & = (&1,...,&,) € C". Then for every f € C(I)
there exists a unique u € C™(I) such that Lu = f and (u(t), v (to), ..., u™ D(t)) =

€.

Proof. Set y1 =u, yo =, ...y, = u™

(
Y1 = Y2
| Yn-1="Yn
n— 1
| Y= —2y— . =yt o f
or, using the vector notation y = (y1,...,Yn),

y=F(y),tel

1

. The equation Lu = f is equivalent to



for a vector-valued function F'. This function satisfies a so called Lipschitz condition
[F(t,y) - F(t,z)| < Kly—=z|, t€l, y,z € R,

for some K € R. Moreover note that the condition (u(to),u'(to), ..., u (ty)) = &
can be written y(ty) = . Picard’s existence theorem ([1] theorem 5.2.5) in vector
form yields the result. ]

We introduce the notation
N(L) ={u e C"(I); Lu = 0}.
Clearly V(L) is a subspace of C"(I) since L is a linear operator.

Corollary 1.1. dim N (L) = n.

Proof. Let ty € I be fixed and define
Tu = (ulty), - .., u™ Y (ty)), u € N(L).

The linear mapping T : N(L) — C" is a bijection from the previous theorem with

the range C". Hence we get dim N (L) = dim C" = n. O
For arbitrary functions us, ..., u, € N (L) we define the Wronskian for uy,...,u,
by
ui(t)  ua(t) Un (t)
ul (¢ ub(t ul (t
wiy-| B0 e C
OISR ORI

Theorem 1.2. The following conditions are equivalent:

1. W(t) #0 forallt € 1.
2. W(to) # 0 for some ty € I.

3. U, ..., Uy, 1S a basis for the vector space N'(L).

Proof. (1) = (2): trivial.

(2) = (3): Take an u € N(L). Since dim N (L) = n it is enough to show that u is
a linear combination of wuq, ..., Uy.

Assume that ¢y € I is fixed and that W () # 0. From courses in linear algebra we
know that there exist aq,...,a, € C" such that

> an(ur(to), - .-, ul ™V (to)) = (ulto), - .., u™ (ko).



The function v = Y] aguy € N (L) satisfies the relation

(v(to), - 0™V (tg)) = (ulto), ., u" (k)
and by Theorem 1.1 we have v = u. Hence it follows that v € span {uy, ..., u,}.

(3) = (1): Let t € I be arbitrary. We will show that W () # 0. It is enough to
show that the columns in the determinant W (¢) are linearly independent.

Assume that aq,...,q, € C" and that

> o (ur(t), .., ul V(1) = (0,0,....,0).

The function v = Y 7 agux, € N(L) satisfies v(t) = ... = v D(¢) = 0 and is
equal to the zero function by Theorem 1.1. However from ) ) aju, = 0 it follows
that a; = ... = o, = 0. Hence the columns in the determinant W (t) are linearly
independent. 0

From now on we use the following notation:
aij,ﬁij,iz(),...,n—l,j: 1,...,7’L

are complex numbers and

[ary

Riu="Y [ajju?(a)+ Bu?(®)], j=1,...,n.

%

Il
<)

are boundary operators. Moreover we set

Ru = (Ryu, ..., Ryu)

Cpl)={ue C"(I): Ru=0}

and
Lou = Lu, u € C}(I).

Theorem 1.3. The following conditions are equivalent:
1. The mapping Lo : CE(I) — C(I) is a bijection.

2. det{Rjuk}1<jk<n # 0 for every (alternatively for some) basis uy,...,u, @

N(L).

Proof. (1) = (2): If the determinant in (2) is zero then there are ay,...,a, € C
not all equal to zero such that

n
Za’kRjuk:O,jz 1,...,77,.
k=1



The function v = >} ajuy, satisfies Lv = 0 together with Rv = 0. This yields a
contradiction since v # 0 and Lov = 0.

(2) = (1): Take an arbitrary f € C(I). It remains to prove that the equation
Lu=f
Ru =0

is uniquely solvable. Set w = u — v, where v € C™(I) satisfies Lv = f (Theorem
1.1), we obtain the equivalent equation

Lw=0

Rw = —Rv.
With the ansatz w = Y| ajuy the determinant condition in (2) gives the existence
of a unique solution. O
Now let uq, ..., u, be a basis for the vector space N (L) and set

e(z,t) = ai(t)ux(z)

where a1 (t), ..., a,(t) are chosen such that

Note that the functions ay(t),...,a,(t) are continuous in ¢ due to Cramer’s rule.
Also observe that for fixed ¢ € I the function u(z) = e(x,t) is the unique solution
to the equation

Lu=0
{ ut) =...=ul2(t) =0, u"D(t) = 1/e,(t).

The function e(z,t), (z,t) € I x I, is called the fundamental solution to the
operator L. This function is of interest in connection with boundary value problems
that we will discuss next.

Theorem 1.4. Let uy,...,u, be a basis for N'(L) such that

det{Rjuk}lgj,kgn 75 0

and set G = Ly'. Then there exists a unique continuous function g(z,t), (z,t) €
I x I, such that

G1)(@) = [ gla0150)ar
I
This s called the Green’s function g and can be constructed as follows:

1. Set é(xz,t) = 0(x — t)e(x,t), where 0 is the Heaviside’s function
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2. Determine by, ..., b, € C(I) such that the function

gz, t) = &(z,t) + > b(t)ux()

k=1

satisfies
R(g(-,t)) =0,a <t <b.

Proof. First set

i(z) = / &z 1) f(D)dt,

I
l.e.

ii(z) = / " ele ) F(t)dt.

Repeated differentiations yield

——
=0

@(0) = [ o0+ els,2) f(o)

(@) = [ el 0r @+ &) f@

=0

————r
=0

W) = [ e O+ Do 0) flo)

and

™ (z) = / " o™ (2, 1) ()t + ﬁ (@),

From this we conclude Lu = f. The function
u(e) = [ gla.f (0t
I

satisfies the equation Lu = f since

u(z) = i(z) + > u(x) / be(t) f(t)dt.

k=1 1

Finally we observe that

and the proof is completed.



The function g in Theorem 1.4 is called the Green’s function for the boundary

value problem
Lu=f
Ru = 0.

Problem 1: Determine the Green’s function for the boundary value problem

{ —((1+2)d(x)) =f(z),0<z<1
u'(0) =0, u(1) = 0.

Solution: The functions u;(z) = 1 and ug(z) = In(1 + z) form a basis for the
solutions to the homogeneous equation —((1 + z)u/(z))’ = 0. Note that

ui(0) wp(0) | _ 1O 1 | _
|1 In2 =-1#0.

so there exists a Green’s function. The fundamental solution e(z,t) = a;(t)uy(z) +
as(t)uq(z) is given by
e(z,t) = ai(t) + ag(t) In(1 + z)

and the constraints e(t,t) = 0, e, (t,t) = easily yield

1+t
e(z,t) =In(l +t) — In(1 + z).
The Green’s function takes the form
g(z,t) =0(x —t)(In(1 +¢) — In(1 + x)) + by (t) + ba(t) In(1 + z)
where

g{c(O,t) =0
{ g(lat) =0,

for 0 <t < 1. Hence we get

by(t) = 0
{ In(1+1%) —In2+by(t) + b2(t) In2 =0

from which we obtain

2
bl(t) =In 1——}—t’ bg(t) =0.
This finally gives
1+¢ 2
t)=0(z—1)1 1 .
9(z,t) = 0 )n1+x+ "1t

Problem 2: Assume that A € C and f € C(]0, 1]). Show that the equation

{U() () Alu(z)| = f(z),0<z <1
u(0) = u(1) =0, u € C?([0,1])

has a unique solution for || < e(e — 1).



Solution: We first determine the Green’s function for the equation

{u"—i—u’:F(x),OSxSl
u(0) = u(1) = 0.

The functions u;(z) = 1 and us(x) = e ® form a basis for the solutions to the
homogeneous equation u” + v’ = 0. With our standard notation we get

e(r,t) =1—¢™"

and

et—e e—eét
) =0(zx—t)(1—e"® -2
Note that
el —e e
t>z=g(z,t) = 1(l—e ) <0
e_
and
et_l 11—z
t<z=g(z,t)= 1(1—6 ) <0
e_

which implies g < 0.
For every u € C([0, 1]) define

(Tu)(z) = /0 g(z, )(f(t) = Au(t))dt, 0 <2 <1

and observe that 7" maps C([0,1]) into {u € C?%([0,1]); u(0) = u(1) = 0}. The
equation in problem 2 has therefore a unique solution iff 7" has a unique fixed point.
For u,v € C([0,1]) it holds that

|(Tu)(z) = (T) (=) = I/0 g(a, ) Alv ()] = Au(®)])dt] <

< IA\/0 (=g(z, O)[v(@)] = [u@)[|dt < [A7(2)][u = vl

where || || denotes the max-norm for C([0, 1]) and

ﬂ@z—Ag@ﬁﬁ

Since j(0) = j(1) = 0 and j"” + j' = —1 it follows that
e e
e—1 ' e—1

. e 1 1
maxj =j| In = +Infl——-| <
[0,1] e—1 e—1 e

J1 1
“e—1 e ele—1)

We conclude that

jlx) =

and

A
Tu—-T < -
70 =Tl < 2 sl = vl
and Banach’s fixed point theorem ([2]) implies that 7" has a unique fixed point for
Al <e(e—1).



1.3 Spectral theory for ordinary differential equations
The linear mapping Ly : C(I) — C(I) is called symmetric if
(Lou,v) = (u, Lov), all u,v € C{(I),
where the inner product is given by the inner product in L*()
b _
() = [ @i,

Provided that Ly is a bijection and g is the Green’s function for the boundary value

problem
Lu=f
Ru=0"
we define
b
@1 = [ gle.nf e, £ € (1)
and

@GN = [ g@nrwa, £ e ).

Theorem 1.5. Assume that Ly is a bijection. Then the following conditions are
equivalent:

1. Ly 1s symmetric

2. G is self-adjoint

3. g(z,t) =g(t,z), z,t € I.

Proof. (1) < (2): Ly is symmetric iff
<L0Gf, Gh> = <Gfa LOGh)a fa h € C(I)
which is the same as

(f,Gh) ={(Gf,h), f,he C(I).

This is equivalent to

(f,Ghy = (Gf,h), f,h € L*(I)

since C(I) is dense in L?(I) and G is a bounded linear operator on L(I) ([1] example
4.2.4) whose restriction to C(I) is equal to G. Lo being symmetric is thus equivalent
to G being self-adjoint.

(2) & (3): We first observe that

(G*f)(x) = / o6 2) (1)t
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([1] example 4.4.6). This implies that G = G* iff

/ (9(a,t) — g(t.2) f(B)dt = 0, € (D).

Since g is continuous this means that g(z,t) — g(¢,z) = 0 for all z,¢ € I and so

g(z,t) = g(t,x) for all z,t € I. O

Example 1: Consider the boundary value problem

{ —u" = f(x)
u(0)=u(1)=0,0<z < 1.

This means that Lu = —u”, Riu = u(0) and Reu = u(1). The operator Ly is

symmetric since

1 1
(Loyu,v) = / —u"vdz = [ - u’q‘)}; + / u'v'dr = {Rv =0} =
0 0

= (u' V') = (v, u') = {Ru = 0} = (Lyv, u) = (u, Lyv)

for all u,v € C%([0,1]). This fact also follows from Theorem 1.5 by checking that
Ly is a bijection and that the Green’s function is given by

g(fcat)={ 1-t)z, 0<z<t<l.

It easily follows that g(z,t) = g(¢, ). The details are left as an exercise.
Theorem 1.6. Assume that Ly is symmetric and is a bijection. Then the following

statements are true:

1. 0 is not an eigenvalue for Ly nor for G.

2. [ is an eigenfunction for Lo corresponding to the eigenvalue p iff f is an
eigenvalue for G corresponding to the eigenvalue 1/p.

Proof. (1): N(Ly) = {0} implies that L, has no eigenfunction corresponding to an
eigenvalue zero.

Now assume that f € N (@) We will show that f = 0. For this take an arbitrary
¢ € C%(I). We obtain

0=(0, Lop) = (Gf, Lod) = (f,GLoo) =

Since C%(I) is dense in L?(I) we can conclude that f = 0.
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(2): =) From .
0# f=G(Lof) =G(uf) = puGf =pGf

it follows that f is an eigenfunction to G corresponding to the eigenvalue 1/ .

<) We have

b
/ g(x,t)f(t)dt=%f(x) ae. in 1.
Setting ’

h(z) = ,u/ g(z, t)f(t)dt, z € I

it follows from Lebesgue’s dominated convergence theorem (see [3]) that h € C(I).
Moreover we have h(z) = f(x) a.e. in I and

hz) = p / o(z, Oh()dt, 3 € 1,

and hence we get Gh = . h. This yields

1 1
h = Ly(Gh) = Ly (—h> = ~Loh.
7 7

Since h # 0 in C}(I), h is an eigenfunction to Ly corresponding to the eigenvalue
p. Thus h, which is equal to f in L?(I), is an eigenfunction to Ly corresponding to
the eigenvalue u. This is the proper interpretation of the formulation in Theorem
1.6 2) and the proof of the theorem is complete. O

Theorem 1.7. Assume that Lo is symmetric and is a bijection. Moreover let (jin)$°
denote the eigenvalues for Ly counted with multiplicity and assume that (e,)$° is a
corresponding sequence of orthonormal eigenfunctions. Then (e,)$° is an ON-basis
for L2(I) and the solution to the equation

Lu=f
Ru=0"

where f € C(I), is given by

Proof. The operator G is compact ([1] example 4.8.4) and the Hilbert-Schmidt the-
orem ([1] theorem 4.10.1) and Theorem 1.6 1) implies that (e,){° is a complete
ON-sequence for L?*(I). From

f = Z<f’ €n>€

in L?(I), Theorem 1.6 2) now implies that

o

u = Gf - Gf = Z<f’ en>éen = Z 'ui<fa en>en
1 n

1
in L2(I). 0
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Example 2: Consider the boundary value problem

{ —u" = f(x)
u(0)=u(1)=0,0<z < 1.

Example 1 shows that the corresponding operator L is symmetric and is a bijection.
The eigenfunctions for Ly are obtained as the non-trivial solutions to the equation

{ —e"(z) = /)w z)

and a simple calculation gives e,(x) = Asinnrz, where A # 0 and n = 1,2,....
The sequence (v/2sinnmz)$° is therefore an ON-basis for L2(]0, 1]).

Example 3: Wirtinger’s inequality states that

1 1
/0 ' (2) 2z > 7 /0 u(z) Pdz

for all u € C*([0,1]) that satisfies u(0) = u(1) = 0. To show this we first let
u(z) = Zanﬂsin nrz (in L?([0,1]))
1

where

1
anz/ u(x)V2sin nrzdz.
0

Furthermore we have
1 1
/ u'(z)V/2 cos nrads = [u($)\/§cos nmﬁ] +
0 0

1
+ mr/ u(z)V2sin nrads = nway,
0

and using the fact that the sequence (\/§ cosnmz) is an ON sequence, Bessel’s
inequality ([1] theorem 3.4.9) yields the estimate

1 9]
/ ' (z)[Pdz > Z?’L27r2|an|2
0 1
where the RHS is greater than or equal to
00 1
> ol =7 [ Juo)Pd
T 0

This gives one proof for Wirtinger’s inequality.

11



References

[1] L.Debnath/P.Mikusinski, Introduction to Hilbert Spaces with Applications 3rd
ed., Academic Press 2005

[2] P.Kumlin, A note on fized point theory, Mathematics, Chalmers & GU
2007/2008

[3] P.Kumlin, A note on LP-spaces, Mathematics, Chalmers & GU 2007/2008

12



