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1. Consider
u"(x) +u'(x) + Aarctan(u(z?)) =0, 0<z<1
{ u(0) = u(l) =1, u € C2([0,1))

To remove the inhomogeneous boundary conditions set v(z) = u(z) — 1 for z € [0,1].
Here v satisfies

(*){ v(z) = v"(z) +v'(z) = —Aarctan(1 + v(z?))), z € [0,1]
BC :v(0) =v(1) =0, v € C?([0,1]).

Step 1: Calculate the Green’s function for L, BC.
vi(z) =1, vo(z) = e~ forms a basis for N'(L). We note that

v1(0) w(1) | _ 1
det[vzw) v2(1>]‘e 170

which (using the notation from the lecture notes on ODE) implies that Lo : C%([0,1]) —
C([0,1]) is a bijection.
Set e(z,t) = a1(t)vi(z) + ag(t)ve(x) where e(t,t) = 0 and el (¢,t) = 1 for all ¢ € [0,1].
We get
ar1(t) +as(t)et =0 . ai1(t) =1

{ —as(t)e”t =1 e { as(t) = —e
Set g(z,t) = e(z,t)0(x — t) + bi(t)v1(z) + be(t)ve(z) where g(0,t) = g(1,¢t) = 0 for all
0 <t < 1. This gives us

)
{ 1—et=t +by(t) + bo(t)e ! =

bao(t) = — o=
and yields
el—e e —e
= ]_ — t—x — _ *SE.

Step 2: The BVP (%) is equivalent to the integral equation
o(z) = /Olg(av,t)(—karctan(l (1)) dt.
For v € C([0,1]) define
T(v)(z) = /01 g(z,t)(—arctan(1 +v(t?))) dt, z €[0,1].

Then T is a mapping from C([0,1]) into C([0,1]), actually we have T'(v) € C?([0, 1))
for v € C([0,1]). Here (%) has a solution if 7" has a fixed point and the solution is



unique if the fixed point is unique. Assume that C([0,1]) is equipped with the norm
|| f|| = maxo<z<1|f(z)| so that (C([0,1]),] -||) becomes a Banach space.

Step 3: Assume that || < 1.
T is a contraction on C(][0, 1]) since:
For z € [0, 1] and wi, w2 € C([0,1]) we have

|T(w1)(z) — T(we)(z)| = |/0 g(z,t)(Marctan (1 + wo(t?)) — arctan(1 + wy (¢?)))) dt| <
< |/\|/0 lg(z,t)|-| arctan (1 +ws(t?)) —arctan(1 +w: (t2))| dt < {mean value theorem} <

1
<IN [ la(w. 0]ty —
and hence 1
I7w0) =T < N oo [ oo, O]t [ =]

Moreover g(z,t) <0 for z,t € [0,1] so

1 1
[ttt = [ ~gtatdt = (o), = € 0.1
0 0
where j(z) is the solution to j”(z) + j'(z) = —1, 7(0) = j(1) = 0, which gives
j(z) = 25 (1 —e*) — z and maxg<z<1 |5(7)| = e%l +1+In(1 - %) < e%l +1-— % =
1

1- o=y < 1. Hence T' is a contraction. The Banach’s fixed point theorem implies that

T has a unique fixed point and (*) has a unique solution.

Step 4: A is an arbitrary real number.

Now 7' is no longer a contraction and we cannot use Banach’s fixed point theorem.
Instead we use Schauder’s fixed point theorem, which implies that we cannot prove
uniqueness (unless we give additional arguments). We note that

INarctan(1 + v(t2))| < gm
for every t € [0,1] and v € C([0,1]) and
lg(z,t)] <2

for every z,t € [0,1]. Hence
Lorx
7@ < [ 2 FiAlde=mix

for every v € C([0,1]). Set S = {v € C([0,1]) : ||v|| < 7|A|}. Here S is a closed convex
subset of C([0,1]) and T'(S) C S. It remains to prove that 7'(S) is relatively compact in
C([0,1]) and that T is continuous on S. In step 3 we showed that T is continuous (the
fact that |A| < 1 was not used) and applying Arzela-Ascoli theorem we can conclude
that T'(S) is relatively compact in C(]0,1]) provided we can establish that



(a) T'(S) is bounded in C(]0, 1]), which is obvious from above, and
(b) T(S) is equicontionuous, which follows from g(z,t) being continuous on the com-

pact set [0, 1] x [0,1] and hence uniformly continuous on that set.

It follows that T" has a fixed point in S and hence the BVP has a solution, possibly not
unique.

. (z)92; is an ON-sequence in a Hilbert space H and (c¢,)2; is a sequence of complex
numbers. We define
T(z) = Z0% 1cn{®, Tn)xp, = € H.

For this to be a well-defined mapping 3%, ¢, (z, zp)zy, has to converge for every z € H.
Since H is a Hilbert space it is enough to show that the partial sums (sy(z))3_; form
Cauchy sequences in H for all z € H, where

sy(z) = 3N e (@, zp)zn, N=1,2,3,...

For N > M we have

N N
lsw(2) = sar(@)I” = IZp=prr16nle, Tn)anll* = Splpralenl’(e, za)*.

Hence if sup,_; 55 . |cn| = C < 0o then
lsw(z) = sm(@)|” < C°Eplprial{e, z0)|? = 0, M, N — 00

since 3%, [{z, z,)|? < ||z||? < 0o by Bessel’s inequality.
Claim: If (¢,)95%; is unbounded then there exists a y € H such that X2 ¢, (y, zn)zy
does not converge.

Assume that (c¢,)5°

o0 | is unbounded and let (cy, )32, be a subsequence of (c,)52; such
that

leny| > 28, k=1,2,3,....

Set y € H by y = Z,;“;@‘kavnk. Clearly E,‘;"ZIQ_kwnk converges in H, (y,z,,) = 27F for
all k and (y,z,) = 0 for n # ny for all k. This implies that

lsn(y) = sue WP = Sl lenl® |y, 2a)* >
>#{ng:ng €[ M+1,N]somek =1,2,3,...} -
as N — oo for all fixed M. Hence 22, ¢ (y, zn) 2z, does not converge.

We conclude that T is well-defined iff the sequence (c,)5° ; is bounded. Moreover T' is

a linear operator on H if (c,)22, is bounded. To see this fix z,y € H and complex
numbers «, 8. Then

T(OHH_,B?/) = ]\}gnoo Zgzlcn<a$+ﬂyamn>zn = ]\;Enoo(aziv:1cn<$,xn)-’”n‘{‘ﬁzgzlcn(yaa:n)xn) =

=« Z\}E)noo SN enlw, xn) T, + ﬂj\}i_r}noo 2N ey, zn) e, = o (z) + BT ().

Finally T is a bounded linear operator on H if (¢;)52 is bounded. To see this set
C = sup,_; 93 . |cs| and note that

IT(@)]* < C*502; (@, z)|* < C?||]|?



by Bessel’s inequality. Hence ||T'|| < C. Actually ||T|| = sup,_ 2,3.... |cx| which is easily
seen.

Next claim is that T' is a compact operator iff lim, o ¢, = 0.
Setting T (z) = ZN_ cp(z, Tp)zn, = € H for N =1,2,3,... we see that

(a) T is compact for every N since dimR(Txy) = N < oo, and

(b) [T = Tn| = supp—ni1,n+2,n+3,../cn] = 0 as N — oo provided lim, o c, = 0,
and

(c) K(H,H) is closed in B(H, H).

Hence T is a compact operator if lim,,_,,, ¢, = 0.

Now assume that lim, o ¢, = 0 does not hold, i.e. there exist a subsequence (cy, )52,
of (cn)p2; such that infy—1 93 . [cp,| = ¢ > 0. Then (z,,);2; is a bounded sequence in
H but (T(zn,))%2; has no converging subsequence since ||T(z,) — T (zn,)||? = |en,|? +
len, |2 > 2¢ for k # 1.

Answer: T is a well-defined bounded linear operator iff the sequence (¢, )52 ; is bounded
and T is a compact operator iff lim,,_,, ¢, = 0.

. Forn=1,2,3,... define T,, : C([0,1]) — C([0,1]) by

Tof (@) = f(a"*%), = € [0,1],
where C([0,1]) is equipped with the max-norm.
(a) Tnf — f in C([0,1]) as n — oo.
Proof: Fix f € C([0,1]). Then
[Tnf = fll = max [Tnf(z) — f(2)| = [Tnf(2n) — f(zn)]

0<z<1

for some z,, € [0,1] since T,,f — f € C([0,1]) and [0, 1] is compact.

Assume that T, f /4 f in C([0,1]) as n — oo. Then there exists an € > 0 such that
T f — fll > € for infinitely many n. But among these n there exists a converging
subsequence (,, )52, of (z,)52,. Hence

T, — T as k — 00

for some z € [0,1], and

4o 14+ )Ing ~
Ty ¥ = ITag)mam, —ze€[0,1]ask — oo

and

1+
[Tnif = Fll = 1T f (@ni) = f(@n )] = [f (20 ™) = Fl2n,)| 2 €
for all k. This gives a contradiction. Hence T,, f — f in C([0,1]) as n — oo.

(b) |Tp, — I]| = 2 for all n.
Proof: Clearly ||T}, — I|| < ||T,|| + ||]| = 2 for all n. For fixed n set

1 z €[0,3] i
fu(z) =< linear z € [2, (%n)ﬁ] € C([0,1]).
-1 zel(z)™, 1

4



Then we get ||fn]| = 1 and

(Tn - I)fn((

This implies

The statement is proved.

4. (a) See textbook

(b) Consider for example E = L?([0,1]) N C([0,1]) with the inner product (-,-);> and
let T : E — C be defined by

Tmzéﬁwﬁ

Clearly T is a linear functional on E with

TN < —=M£lz2,

=
V2
using Schwartz’ inequality, and so ||7']| < % < o0. However if

T(f)=({f,9)r2, [e€L?

for some g € F then g must be equal to 1 on (0, %) and equal to 0 on (%, 1) which
is impossible.

5. (a) See textbook on Neumann series

(b) See method of continuity in the lecture notes on spectral theory.
Set Ay = I +1tS for t € [0,1]. We then observe that
i. Ag = I is invertible,
i (|4 = Ap|| = It = #)S|| = |t — #'|[|S||, and
iii. || Asz||* = ((I4£8)(2), (I+4t5)(2)) = ||z[*+£%(|S (z)[*+£(S (z), z)+1{z, S(z)) >
l=[I* + ¢2(1S (@)|]” > ||=||* for ¢ € [0,1].
The method of continuity yields that A; = I 4+ S is invertible.

6. From the textbook we have that O # T € B(H,H), where H is a Hilbert space,
satisfying T2 = T is an ortogonal projection iff T is self-adjoint. To prove that the
statements a), b) and c¢) are equivalent we prove the four implications below. The
following implication suffices.

a) = b): T* = T implies N'(T*) = N(T) and hence

N(T) = N(T*) = {well — known} = R(T)*

follows.
a) = c): Since 7' is an orthogonal projection on H we have that 7' = Pg for some closed



subspace of H. Moreover H = S@ S+ and H >z = y + 2z, where y € S and z € S+,
implies T'(z) = y. This gives

(T(z),z) = (y,z) = (y,9) = ylI” > 0

and the implication a) = c) follows.

b) = a): T? = T implies N'(I — T) = R(T) and hence R(T) is a closed subspace of H.
Set S = R(T). By the orthogonal projection theorem H = S@ S+. Fix z € H. Then
r =y + 2z wherey € S and z € S*. But St = N(T) by b). Hence T(z) = T(y). But
y € S implies that y = T'(w) for some w € H and so T(y) = T?(w) = T(w) = y. We
have T'(z) = y and a) is proved.

¢) = b): Fix x € R(T) and y € N(T). This yields

0<(T(z+y),z+y) =(T(z),z+y).

But z € R(T) implies z = T'(z) for some z € H and so
T(z) = T?(z) = T(z) = z. Hence

(w,y) > —lz]*.

But y € N(T) implies ny € N(T) for n =1,2,3,... and so

1
() >~ 2]

Letting n — oo implies
(z,y) > 0.

Also y € N(T) implies —y € N(T) yielding
<.’I,', _y) > 0.

Hence (z,y) = 0 and b) follows.



