Homework assignment 2

Deadline 2012-10-08

Problem 1: A mapping $T : \mathbb{R} \to \mathbb{R}$ satisfies a Lipschitz-condition with constant k if

$$|T(x) - T(y)| \le k|x - y|$$

for all $x, y \in \mathbb{R}$.

- 1. Is T a contraction?
- 2. If T is a C^1 -function with bounded derivative, show that T satisfies a Lipschitz-condition.
- 3. If T satisfies a Lipschitz-condition, is T then a C^1 -function with bounded derivative?
- 4. Assume that $|T(x) T(y)| \le k|x y|^{\alpha}$ for all $x, y \in \mathbb{R}$ for some $\alpha > 1$. Show that T is a constant.

Problem 2: Consider the equation¹

$$3u(x) = x + (u(x))^2 + \int_0^1 |x - u(y)|^{1/2} \, dy.$$

Show that it has a continuous solution u satisfying $0 \le u(x) \le 1$ for $0 \le x \le 1$.

- **Problem 3:** Find an ON-basis for the subspace $\text{Span}\{1 + x, 1 x\}$ in $L^2([0, 1])$.
- **Problem 4:** Let $(e_n)_{n=1}^{\infty}$ be an ON-basis for a Hilbert space H. Assume that $(f_n)_{n=1}^{\infty}$ is an ON-sequence in H that satisfies

$$\sum_{n=1}^{\infty} \|e_n - f_n\|^2 < 1.$$
 (1)

Show that $(f_n)_{n=1}^{\infty}$ is an ON-basis for *H*. What can be said if (1) is replaced by

$$\sum_{n=1}^{\infty} \|e_n - f_n\|^2 < \infty$$

¹Hint: See Krasnoselskii's fixed point theorem in the lecture notes on fixed point theorems.