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1 A Note on Lp–spaces

1.1 Introduction

A basic feature for the important results in this course – Banach’s fixed point
theorem, Brouwer’s fixed point theorem, Schauder’s fixed point theorem, Hilbert-
Schmidt theorem and others – is that the mappings that appear should be defined
on complete normed spaces = Banach spaces. The completeness is crucial and the
theorems would no longer be true without the assumption on completeness.

A technique often used to prove existence of a solution to a problem (and also to
find the solution) is to find solutions to approximate problems and by improving the
approximations it can sometimes be possible to obtain a sequence of approximative
solutions that forms a Cauchy sequence in a proper space. A solution to the original
problem can then often be obtained as the limit of the Cauchy sequence provided
the space is a Banach space.

An example of a function space that often appears is the vector space of all continu-
ous functions defined on Rn or some “nice”1 subset Ω of Rn, with pointwise defined
addition and multiplication by scalars. We note the if C(Ω) is equipped with the
sup-norm, i.e.

‖f‖ = sup
t∈Ω

|f(t)|, f ∈ C(Ω),

then the normed space (C(Ω), ‖·‖) becomes a Banach space. But if C(Ω) is supplied
with the norm

‖f‖1 =

∫

Ω

|f(t)| dt, f ∈ C(Ω),

then (C(Ω), ‖ · ‖1) is a normed space but not a Banach space. See for instance
example 1 below. The set Ω is supposed to be a compact subset of Rn so all
integrals are finite. It is a pity that (C(Ω), ‖ · ‖1) is not a Banach space since the
norm ‖ · ‖1 gives a natural measure of size. If f is a density function then ‖f‖1

corresponds to the total mass. Moreover in physics the integral

‖f‖2 = (

∫

Ω

|f(t)|2 dt)1/2, f ∈ C(Ω).

measures the“energy”of a system described by f . In general it is natural to consider
norms

‖f‖p = (

∫

Ω

|f(t)|p dt)1/p, f ∈ C(Ω),

1We assume that Ω is compact and equal to the closure of its interior.
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where p ∈ [1,∞). To see that these expressions really define norm functions the
same technique that was used to prove the corresponding statements for the sequence
spaces lp can be used.

Example 1: Consider the set Ω = [0, 1] ⊂ R and define

fn(t) =







0 t ∈ [0, 1
2
)

2n(t − 1
2
) t ∈ [1

2
, 1

2
+ 1

2n
)

1 t ∈ [1
2

+ 1
2n

, 1]

for n = 1, 2, . . . Sketch the graph for fn here!

We see that (fn)∞n=1 defines a Cauchy sequence in the normed space (C[0, 1], ‖ ‖1)
since

‖fn − fm‖1 =

∫ 1
2
+ 1

2 min(n,m)

1
2

|fn(t) − fm(t)| dt

≤
1

2 min(n,m)
→ 0, n,m → ∞.

However there is no continuous function f such that fn → f in (C[0, 1], ‖ ‖1). Prove
this! On the other hand the sequence (fn)∞n=1 converges pointwise to h given by

h(t) =

{

0 t ∈ [0, 1
2
]

1 t ∈ (1
2
, 1]

.

h is not continuous but still Riemann integrable and satisfies

lim
n→∞

‖fn − h‖1 = 0.

The fact that the function h above is Riemann integrable might suggest that

(Riemann integrable functions, ‖ · ‖1) (1)

is a Banach space. It is clear that linear combinations of Riemann integrable func-
tions are Riemann integrable and that also products of Riemann integrable functions
are Riemann integrable2. However Riemann integrable functions are not closed un-
der pointwise limits as seen from the following example.

2If f is Riemann integrable then so is f2 and if both f and g are Riemann integrable then so
is fg since fg = 1

4
((f + g)2 − (f − g)2).
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Example 2: Let Ω denote the interval [0, 1] and let {r1, r2, r3, . . .} be an enumera-
tion of all rational numbers in the interval [0, 1]. For n = 1, 2, . . . define

fn(t) = χ{r1,...,rn}(t) =

{

1 t ∈ {r1, . . . , rn}
0 t 6∈ {r1, . . . , rn}

.

Moreover set

f(t) = χ{r1,r2,r3,...}(t) =

{

1 t ∈ {r1, r2, r3, . . .}
0 t 6∈ {r1, r2, r3, . . .}

.

We note that fn is Riemann integrable for every n and that (fn)∞n=1 is a Cauchy
sequence in the normed space (Riemann integrable functions, ‖ · ‖1), but the point-
wise limit function f is not Riemann integrable. Prove this! Here should also be
observed that ‖ · ‖1 cannot see the difference between fn for any n and 0. Here 0

denotes the function that is pointwise 0 for all x ∈ [0, 1]. For ‖ · ‖1 to be a norm for
the Riemann integrable functions we have to identify fn and 0 for all n.

So if we want to have a Banach space containing all Riemann integrable functions
we ought accept f as an element in that space since it is the pointwise limit of the
sequence (fn(x)) (we have 0 ≤ fn(x) ↑ f(x) ≤ 1 for all x ∈ [0, 1]). In applications it
will be important for us to have strong convergence theorems of the form

” lim
n→∞

∫

fn dx =

∫

lim
n→∞

fn dx ”.

If this holds for the functions considered above we note that f 6= 0 but neither
the less we have ‖f − 0‖1 = 0. We can not detect the difference between f and 0

measuring with the ‖ · ‖1–norm and have to identify these functions. We will say
say that the functions differs on a set of measure 0. This identification also has to
be done for Riemann integrable functions for ‖ · ‖1 to be a norm.

Considering the ‖ · ‖p–norms, 1 ≤ p < ∞ in general, it can be observed that only for
p = 2 the norm is a Hilbert space norm, i.e. there can be defined an inner product
〈·, ·〉 on the vector space in such a way that ‖x‖ =

√

〈x, x〉 for all x holds true.
Neither the sup-norm can be connected with an inner product. The Hilbert space
structure will be important to us in connection with spectral theory in chapter 4 in
[2].

The problem is now to extend the normed space (C(Ω), ‖ · ‖p) to a Banach space.
The method to complete the normed space that is discussed in section 4 chapter
1 in [2] has the disadvantage that the properties of the elements in the completion
can be hard to read off and it is not obvious that the elements are pointwise defined
functions.

We will below make a quick gallop through the landscape of Lebegue integration
with stops at measurable sets, measurable functions, Lebesgue integrals, convergence
theorems and Lp–spaces. Some ideas for the proofs will be sketched. For those who
are interested in a thorough treatment we refer to the books by Folland [3] (textbook
on graduate level), Rudin [5] (also a graduate level textbook), Rudin [6] (a more
elementary book), Apostol [1] (has been used for undergraduate courses at GU) or
why not Hörmander [4]. The presentations differ slightly but most are based on
measure theory.
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1.2 Lebesgue measure on Rn

In measure theory we want to generalize the concept of length of an interval in R,
area of a rectangle in R2 on so on to a wider class of sets. The ultimate goal is
to assign a measure to as many sets as possible where the measure has to satisfy
certain natural conditions. If all intervals [a, b] ⊂ R, a < b (as well as the intervals
[a, b), (a, b], (a, b)) should have the measure b − a then there are subsets of the real
numbers that are impossible to assign a measure to3. This is hard to prove and is
based on the axiom of choice4.

First let us see for which subsets of a an arbitrary set X it would be natural to be able
to assign measure to. Intuitively it is natural that given countable many sets, where
all have a well-defined measure, all sets that can be obtained by countably many
applications with the set operations union, intersection and complement should also
be possible to assign a measure to. This motivates the following definition.

Definition 1.1. A set M of subsets of X is called a σ–algebra if

1. ∅ ∈ M

2. E ∈ M implies X \ E ∈ M

3. E1, E2, . . . ∈ M implies
⋃∞

n=1 En ∈ M

A set in M is called a measurable set. Let Bn denote the smallest σ–algebra that
contains all open sets in Rn. This is called the Borel σ–algebra. For simplicity
we restrict to the case n = 1 but what is said holds true for general n. There exists
such a smallest σ–algebra, since the intersection of any collection of σ–algebras is a
σ–algebra, and all the intervals of the four types above are contained here.

Given a σ–algebra M we can talk about a measure µ on M. A measure should
satisfy some properties encoded in the next definition.

Definition 1.2. A measure µ on the σ–algebra M is a mapping

µ : M → [0, +∞]

such that

1. µ(∅) = 0

2. E1, E2, . . . ∈ M mutually disjoint sets implies µ(
⋃∞

n=1 En) = Σ∞
n=1µ(En)

3A well-known example of this is due to Vitali. Even more striking is the following example in
R

3 by Banach and Tarski and which only involves finite additivity. They proved: The unit ball
in R

3 can be decomposed into a finite number of pieces which may be reassembled, using only
translation and rotation, to form 2 disjoint copies of the unit ball

4The axiom of choice says that for every class of non-empty sets Eλ, λ ∈ Λ, there exists a set
consisting of one element from every set Eλ.
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The property 2. is called countable additivity for measures and is a key property
when defining Lebesgue integrals. The main question is now whether it is possible
to prove the existence of a unique measure on the Borel σ–algebra with the property
that all intervals with end points at a and b has the measure |b − a|. The answer is
yes and this measure is called the Borel measure. This is the foundation on which
the Lp-theory rests. The Lebesgue measure is obtained by completing the Borel
measure in the following sense.

Definition 1.3. Let µ be a measure on a σ–algebra M. Then there exists a σ–
algebra M̄ and a well-defined measure µ̄ : M̄ → [0, +∞] such that E ∈ M̄ iff
E = A

⋃

B, where A ∈ M and B ⊂ C ∈ M with µ(C) = 0, and µ̄(E) = µ(A).

What has been done is to add all subsets of measurable sets with measure 0 in such
a way that also M̄ becomes a σ–algebra. Note that it follows from the definition
that if A,B ∈ M, A ⊂ B, then we have µ(A) ≤ µ(B). We call B̄1 the Lebesgue σ–

algebra on R and denote it by L1 and the completed Borel measure on L1 denoted
m is called the Lebesgue measure.

We mentioned above that there are subsets of R that are not Lebesgue measurable.
The following result can be proved.

Theorem 1.1 (Approximation). Let E ⊂ R be Lebesgue measurable. Then we have

m(E) = inf{m(U) : E ⊂ U, U open} = sup{m(K) : K ⊂ E, K compact}.

Moreover if m(E) < ∞ then for every ǫ > 0 there exists an open set A consisting
of finitely many open intervals such that

m((E \ A)
⋃

(A \ E)) < ǫ.

What has been said about R is true for Rn, n = 2, 3, . . ., provided intervals are
replaced by rectangles parallel to the axis etc. By Ln = L we denote the Lebesgue
σ–algebra on Rn, i.e. the completed Borel σ–algebra Bn, and the approximation
theorem above corresponds to a natural generalization for Rn.

1.3 Lebesgue measurable functions

We will now consider functions f that takes values in R̄ = R⋃

{±∞} where we
define 0 · ∞ = 0. What has to be avoided is undefined expressions like ∞−∞. In
this section every function takes values in R̄. We say that the function f : Rn → R̄
is Lebesgue measurable if f−1([a,∞)) ∈ L for every a ∈ R. Here f−1(U) denotes
the set {x ∈ Rn : f(x) ∈ U}, i.e. the inverse image of U under f . From this definition
it follows that f−1(E) ∈ L for every Borel set E but also that all functions that can
be formed using the operations

+ · sup
n=1,2,...

inf
n=1,2,...

lim sup
n=1,2,...

lim inf
n=1,2,...

on Lebesgue measurable functions are Lebesgue measurable. More precisely, given
Lebesgue measurable functions f, g, fn, n = 1, 2, . . . then the functions
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1. f + g, fg, λf , where λ ∈ R
2. max(f, g), min(f, g)

3. supn=1,2,... fn, infn=1,2,... fn

4. lim supn→∞ fn ≡ limk→∞ supn≥k fn, lim infn→∞ fn ≡ limk→∞ infn≥k fn

are also Lebesgue measurable. It can be shown that every continuous function is
Lebesgue measurable! The most important examples of Lebesgue measurable func-
tions are the so called simple functions that are given by finite linear combinations
of characteristic functions for Lebesgue measurable sets, i.e. functions of the form

ΣN
n=1λnχEn

where χE(t) = 1 if t ∈ E and = 0 if t 6∈ E. We assume that λi 6= λj for i 6= j. Check
for yourself that the simple functions are Lebesgue measurable. The key property
for the simple functions is the following observation.

Theorem 1.2 (Approximation). Let f : Rn → [0,∞] be a Lebesgue measurable
function. Then there exists a sequence of simple functions φn, n = 1, 2, . . . such that

1. 0 ≤ φ1 ≤ φ2 ≤ φ3 ≤ . . .

2. limn→∞ φn(t) = f(t) for all t ∈ Rn

3. φn converges uniformly to f on each set A ⊂ Rn where f is bounded.

We note that the limit function for an increasing sequence of simple functions is
also Lebesgue measurable. But also converse, i.e. that every Lebesgue measurable
function (bounded below) can be obtained as the limit function for an increasing
sequence of simple functions.

The proof for the theorem is quite simple. Set

φn = Σ22n−1

k=0 k2−nχEk
n

+ 2nχFn
,

where
Ek

n = f−1((k2−n, (k + 1)2−n])

and
Fn = f−1((2n,∞]).

for n = 1, 2, . . .. For an f of your choice draw the graphs for φn!

Next we introduce the term almost everywhere, abbreviated a.e., which means
everywhere except on a set of measure 0. To say that the functions f and g are
equal a.e. means that the set where the functions differ must not be empty but have
the Lebesgue measure 0. In the same way fn → f pointwise a.e. means that the
set where we do not have convergence is a 0–set. Since every subset of a 0–set is a
0–set we get
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1. f Lebesgue measurable and f = g a.e. implies that g is Lebesgue measurable.

2. fn, n = 1, 2, . . ., Lebesgue measurable and fn → f pointwise a.e. implies that
f is Lebesgue measurable.

Finally f : Rn → C is called Lebesgue measurable if both Ref and Imf are Lebesgue
measurable. This is the same as saying that f−1(U) ∈ L for every open set U in C.

1.4 Integrals and convergence theorems

A complex-valued function f can uniquely be written as a sum of its real- and
imaginary part

f = Ref + i Imf,

where Ref and Imf are real-valued. Both these functions can be written as a sum
of the positive and the negative part of f . If f is real-valued we denote

f+ = max(f, 0)

and
f− = max(−f, 0).

Hence we get f = f+−f− (and |f | = f+ +f−). Since we want the integral operator

f 7→

∫

f dm

(not yet defined) to be linear on Lebesgue integrable functions we must have
∫

f dm =

∫

(Ref)+ dm −

∫

(Ref)− dm + i(

∫

(Imf)+ dm −

∫

(Ref)− dm).

So it is enough to define
∫

f dm

for all Lebesgue measurable functions f : Rn → [0,∞]. This will be done in two
steps.

Step 1 For f = ΣN
n=1λnχEn

, i.e. for a simple function f , we set
∫

f dm = ΣN
n=1λnm(En).

Step 2 If f is a Lebesgue measurable function we set
∫

f dm = sup{

∫

φ dm : φ simple function, 0 ≤ φ ≤ f}.

It can quite easily be shown that the integral is well-defined. The integral can attain
the value +∞ since we have not assumed any size condition for f . We let L+ denote
the set of all real Lebesgue measurable functions that takes values in [0,∞].
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From the definition it follows that f, g ∈ L+ and f ≤ g implies

∫

f dm ≤

∫

g dm.

Moreover we let L1 denote the set of all Lebesgue measurable functions f : Rn → C
for which

max(

∫

Ref+ dm,

∫

Ref− dm,

∫

Imf+ dm,

∫

Imf− dm) < ∞.

This is equivalent to
∫

|f | dm < ∞.

Moreover we note that

|

∫

f dm| ≤

∫

|f | dm.

Finally we define
∫

E

f dm =

∫

fχE dm,

for E a Lebesgue measurable set in Rn.

The question is then: What is the difference between the Lebesgue integral and
the Riemann integral? The answer sits in the definitions. Let us for the moment
assume that f attains its values in [0,M ] for some M > 0. Remember that the
definition of the Riemann integral is based on splitting the x–axis into a union of
tiny disjoint intervals Ik. Set Mk = supIk

f and mk = infIk
f . We get

∫

f dx ≈ ΣkMk|Ik|

provided ΣkMk|Ik| ≈ Σkmk|Ik|, where |Ik| denotes the length of the interval Ik.
With the notation ≈ we mean that the difference tends to 0 as supk |Ik| → 0. To
have this we need f to be almost constant on every interval Ik (i.e. Mk −mk ≈ 0) or
that the number of all intervals for which this is not true (i.e. Mk−mk 6≈ 0) is small.
Another way to phrase it is that f should be continuous except for a small set of
points with Lebesgue measure 0. Using our special lingo we say that f is Riemann
integrable if the set where f is discontinuous is a set of Lebesgue measure 0. In the
previous example with f = χQT

[0,1] the set of points of discontinuity is the whole
interval [0, 1] which has Lebesgue measure equal to 1 and not 0.

The definition of the Lebesgue integral is based on splitting the y–axis into small
intervals Ik

n = [k2−n, (k + 1)2−n). Here n indicates how fine the decomposition is,
more precisely 2−n is the length of the intervals. Comparing with the definition for
simple functions (we assume that f is non-negative and M < 2n) we have

∫

f dm ≈ Σkk2−nm(Ek
n),
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where we observe that |f − φn| ≤ 2−n on Ek
n. See page 6. For the sum to have a

meaning it is needed that m(Ek
n) and m(Fn) are well-defined, which is guaranteed

by the assumption that f is Lebesgue measurable. If we return to the function
f = χQT

[0,1] we see that f is 0 except at the rational points in the interval [0, 1],
which is equal to {r1, r2, . . .}. But every set {rn} is Lebesgue measurable with the
measure 0 and a countable union of 0–sets is a 0–set. Hence we have

∫

f dm = 0.

We observe that every continuous function which is different from 0 only in a com-
pact subset of Rn is Riemann integrable, that each Riemann integrable function
(with finite ‖ · ‖1–norm) is Lebesgue integrable and

∫Rn

f(x) dx =

∫

f dm.

Here the LHS denotes the Riemann integral for f and the RHS denotes the Lebesgue
integral for f .

Below we list some theorems that will become important to us for applications. It
is important to note that the Lebesgue integral is an extension for the Riemann
integral with the properties we wanted: powerful convergence theorems and the
function space (L1, ‖ · ‖1) is complete.

Theorem 1.3 (Lebesgue’s monotone convergence theorem). Let (fn)∞n=1 ⊂ L+ be a
monotone increasing sequence of functions. Then we have

lim
n→∞

∫

fn dm =

∫

lim
n→∞

fn dm.

Theorem 1.4 (Fatou’s lemma). Let (fn)∞n=1 ⊂ L+ be a sequence of functions. Then
we have

∫

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫

fn dm.

Theorem 1.5 (Lebesgue’s dominated convergence theorem). Assume that (fn)∞n=1 is
a sequence of complex-valued Lebesgue measurable functions such that limn→∞ fn =
f a.e. Moreover assume that there exists a Lebesgue measurable function g such that

|fn| ≤ g ∈ L1 all n.

Then we have
f ∈ L1

and

lim
n→∞

∫

fn dm =

∫

f dm.

Theorem 1.6 (Differentiation under the integral sign). Assume that f(t, x) : Rn ×
[a, b] → C and that f(·, x) : Rn → C is a L1–function for each x ∈ [a, b]. Set
F (x) =

∫

f(t, x) dm(t).

• Assume that there exists a g ∈ L1 such that

|f(t, x)| ≤ g(t) all t, x.
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Then we have
lim

x→x0

F (x) = F (x0)

provided
lim

x→x0

f(t, x) = f(t, x0) all t.

• Assume that
∂f

∂x
exists and that there is a g ∈ L1 such that

|
∂f

∂x
(t, x)| ≤ g(t) all t, x.

Then F is differentiable and

F ′(x) =

∫

∂f

∂x
(t, x) dm(t).

We now assume that n = 1 and recall that a real function is continuously differen-
tiable iff

f(x) =

∫ x

a

g(t) dt

where g is a continuous real function. Furthermore we have f ′ = g. What can be
said about the function

∫ x

a

g(t) dt

where g ∈ L1?

To answer this question we introduce the concept of absolutely continuous func-

tion. We say that the real function f is absolutely continuous if for every ǫ > 0
there exists a δ > 0 such that

Σ|bn − an| < δ

implies that
Σ|f(bn) − f(an)| < ǫ.

In particular this means that f is continuous and moreover uniformly continuous on
the set where it is defined. Σ . . . stands for the sum for a finite series.

Theorem 1.7. A real function f(x) is given by
∫ x

a
g dm, where g is a locally5

Lebesgue integrable function, iff f is absolutely continuous. In that case we have
f ′ = g a.e..

From calculus course we remember that multiple Riemann integrals can be calcu-
lated by repeated integration. Is this still true for multiple Lebesgue integrals? The
answer is contained in the following result.

Theorem 1.8 (Fubini–Tonelli’s theorem). Assume that f(·, ·) is Lebesgue measur-
able and that one of the following conditions are satisfied:

5L1

loc
is defined below.
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1. (Tonelli) f ≥ 0

2. (Fubini) one of the integrals
∫

|f(x, y)| dm(x, y),
∫

(
∫

|f(x, y)| dm(y)) dm(x),
∫

(
∫

|f(x, y)| dm(x)) dm(y) is finite.

Then the functions f(·, y), f(x, ·),
∫

f(·, y) dm(y) and
∫

f(x, ·) dm(x) are Lebesgue
measurable and

∫

f(x, y) dm(x, y) =

∫

(

∫

f(x, y) dm(y)) dm(x) =

∫

(

∫

f(x, y) dm(x)) dm(y).

1.5 Lp–spaces, Hölder’s and Young’s inequalities

For Lebesgue measurable functions f we define

‖f‖p = (

∫

|f |p dm)1/p, p ∈ [1,∞)

and
‖f‖∞ = ess sup |f |.

Here ess sup for real-valued non-negative functions f denotes the quantity

ess supf = inf{k : k ≥ f a.e.}.

We now define the Lp–space as the set of all Lebesgue measurable functions such
that ‖f‖p < ∞. This is valid for 1 ≤ p ≤ ∞ and we see that

• ‖f − g‖p = 0 iff f = g a.e. Functions in Lp are identified if they are equal a.e.

• f ∈ Lp implies that |f | < ∞ a.e.

• f ∈ L∞ and f continuous implies that ‖f‖∞ = sup |f |. If f is not continuous
then we obtain that the set of all x where f(x) > ‖f‖∞ is a 0–set.

We claim that ‖ · ‖p really defines a norm. If p = 1,∞ this is trivial. For p ∈ (1,∞)
it is a consequence of Hölder’s inequality

‖fg‖1 ≤ ‖f‖p ‖g‖q,

where
1

p
+

1

q
= 1, p > 1. This is established with a similar technique to that which

was used for proving the corresponding statement for the sequence space lp . This
yields the Minkowski’s inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p

for p ∈ (1,∞).

We have now defined Lp as a normed space. The notations L
p
loc denotes the set of

all Lebesgue measurable functions f for which fχE ∈ Lp for all compact Lebesgue
measurable sets E in Rn.
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Theorem 1.9. Lp with the norm ‖ · ‖p is a Banach space for p ∈ [1,∞]. It is
separable (there exists a countable dense set) for p ∈ [1,∞). If (fn)∞n=1 is a Cauchy
sequence in Lp for p ∈ [1,∞) there exists a subsequence (fnk

)∞k=1 that converges
pointwise a.e.

Try to prove this!!

Let f be a complex-valued function on Rn. The closure of the set {x : f(x) 6= 0} is
called the support for f and we let C∞

0 denote the set of all infinitely continuously
differentiable functions with compact support.

Theorem 1.10. For p ∈ [1,∞) we have

1. Lp
⋂

{ simple functions }

2. C∞
0

are both dense in Lp.

Finally we give some inequalities that can come in handy in many calculations.

Theorem 1.11 (Young’s inequality). Assume that k : Rn × Rn → C is Lebesgue
measurable and that

max(sup
x

∫

|k(x, y)| dm(y), sup
y

∫

|k(x, y)| dm(x)) = M < ∞.

If f ∈ Lp for some p ∈ [1,∞] then

F (x) =

∫

k(x, y)f(y) dm(y)

belongs to Lp and
‖F‖p ≤ M‖f‖p.

Theorem 1.12 (Chebyshev’s inequality). Let f ∈ Lp, p ∈ [1,∞) and α > 0 be
given. Then we have

m({x : |f(x)| > α}) ≤ (
‖f‖p

α
)p.

In hindsight we note that functions that are Lebesgue integrable can be very wild
but at the same time there are continuous nice functions that are close to the wild
beasts in Lp-norm. Often in applications we want to prove that a certain function,
appearing as a solution to some say integral equation, is continuous but from the
first consideration we just obtain it as an element in Lp. However the continuity
property for the function can then be established from the specific problem. What
the Lp–theory has contributed with is the existence of a function that can be proven
to have some good properties.
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