Homework assignment 1

Deadline 2013-09-20

Problem 1 : Let E = C([0, 1]). Show that

1. if $a_k, k = 1, ..., n$ are n distinct points in [0, 1] then the functions

 $x \mapsto |x - a_k|, \ k = 1, \dots, n$

are linearly independent on E,

2. the function

$$(x,y) \mapsto |x-y|$$

on $[0,1] \times [0,1]$ cannot be written as a finite sum

 $\sum_{i=1}^{n} v_i(x) w_i(y),$

where $v_i, w_i \in E, i = 1, \ldots, n$.

- **Problem 2** : Find a sequence $\mathbf{x} = (x_1, x_2, \ldots)$ with $x_n \to 0$ as $n \to \infty$ that is not in any l^p for $1 \le p < \infty$. Find a sequence $\mathbf{x} = (x_1, x_2, \ldots)$ which is in l^p for all p > 1 but not in l^1 . Give an example of a subspace in l^2 that is not closed.
- **Problem 3** : Let $C^1([0,1])$ be the vector space of all continuously differentiable functions $f:[0,1] \to \mathbb{R}$. Show that
 - 1. $C^{1}([0,1])$ with the norm ||f|| + ||f'|| is a Banach space,
 - 2. $C^{1}([0,1])$ with the norm ||f|| is not a Banach space.

Here ||f|| denotes $\max_{x \in [0,1]} |f(x)|$.

- **Problem 4:** Let E denote the real vector space C([0,1]) equipped with the norm $||f|| = \max_{x \in [0,1]} |f(x)|$ and let $T : E \to E$ be a linear mapping. Assume that $Tf(x) \ge 0$ for all $x \in [0,1]$ provided $f(x) \ge 0$ for all $x \in [0,1]$. Show that
 - 1. T is continuous
 - 2. $||T|| = \sup_{x \in [0,1]} T\mathbf{1}(x)$ where **1** denotes the constant function taking the value 1.
 - 3. Let $U: E \to E$ be defined by $Uf(x) = \int_0^1 e^{xt} f(t) dt$ and the sequence $U_n: E \to E, n = 1, 2, 3, \ldots$ be defined by

$$U_n f(x) = \int_0^1 \sum_{k=0}^n \frac{(tx)^k}{k!} f(t) \, dt.$$

Prove that $||U_n - U|| \to 0$.