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1 A Note on Fixed Point Theory

1.1 Introduction

This note contains topics from nonlinear functional analysis. It means that the
mappings that appear are not assumed to be linear unless explicitly stated to be so.

Our main problem is to solve equations of the form

T (u) = v,

where T : X → Y is a mapping between Banach spaces X and Y . Here v ∈ Y is
given and we look for solutions in X or some subset of X. For linear mappings T we
can often find a formula for the inverse operator. The solution has to be uniquely
defined in this case. An example of this is boundary value problems

{
u(n) + an−1u

(n−1) + . . .+ a1u
′ + a0u = v, in I

homogeneous boundary values on ∂I

The solutions are obtained as convolutions of the Green’s function for the problem
with the right hand side v of the differential equation.

However if T is a nonlinear mapping then in general we can not find a formula
representing the solution/solutions. This is also the case when X = Y . We can no
longer prove the existence of a solution just by explicitly writing down the inverse
operator, but we have rely on mapping properties of T to prove the existence of a
solution. It might be the case that there are several solutions.

In connection with integral equations for instance we have X = Y and the mapping
T takes the form

T (u) = u+G(u),

i.e. T is a perturbation of the identity mapping. The problem can be formulated as

u = H(u),

whereH(u) = v−G(u). Here we suppress the variable v and considerH as a function
of u with v as a parameter. The problem to find a solution is then equivalent to
find a fixed point of H, i.e. an element u0 ∈ X such that

u0 = H(u0).
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We recall that if G is linear and small in the sense that the operator norm of G is
less than 1 then the mapping T−1 is a welldefined bounded linear mapping and can
be obtained as a Neumann series (see [5]).

The fixed point results that will be discussed here are of two types. The first type
deals with contractions and are referred to as metric fixed point theorems. One
example of such a theorem is called Banach’s fixed point theorem. The second type
deals with compact mappings. Those are called topological fixed point theorems and
are more involved. Names associated with such results are Brouwer and Schauder.

First let us consider a simple example. Assume that

f : [0, 1] → [0, 1]

is a continuous function. Then there exists a x0 ∈ [0, 1] such that f(x0) = x0. This
is a consequence of the theorem saying that every real-valued continuous function
attains every intermediary value between any two given values and is based on the
fact that

1. [0, 1] is a connected closed (i.e. a compact1 and convex) subset in a Banach
space, here R, and that

2. f is a continuous function.

To prove the existence of a fixed point for f we just define the function g(x) =
x− f(x) on the interval [0, 1] and observe that g is a continuous function satisfying
g(0) ≤ 0 ≤ g(1). We can then conclude that there is a x0 ∈ [0, 1] such that g(x0) = 0.
This example can be considered as the 1-dimensional version of Brouwer fixed point
theorem. One feature here is that the method is not constructive, i.e. the position
of the fixed point is not given by the method. Nor does the method yield that the
fixed point is unique, which indeed is sound since there can be any number of fixed
points for f . To get some information on the position of one fixed point we can use
the strategy of repeatedly bisecting intervals into pieces as follows: Assume that
g(0) < 0 < g(1), since otherwise we already have one fixed point, and consider the
subintervals [0, 1

2
] and [1

2
, 1]. If g(1

2
) = 0 we have one fixed point namely x0 = 1

2
.

If g(1
2
) > 0 or g(1

2
) < 0 we can apply the procedure to the the restriction of the

function g to the subintervals [0, 1
2
] and [1

2
, 1] respectively. In this way we either

find a fixed point as an end point of an interval or we find an infinite set of nested
shrinking intervals that all contains a fixed point. For the later case we can for any
ǫ > 0 find an interval of length less than ǫ that contains a fixed point. We also note
that this argument proves the intermediary value theorem provided we have that R

is a complete normed space, i.e. a Banach space. Compare the argument above with
the proof of Baire’s theorem.

1cf. g : (0, 1) → (0, 1) with g(x) = x

2
.
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1.2 Banach’s fixed point theorem

First we look at the problem to find a fixed point for a real-valued continuous
function f : R → R in the spirit of Banach’s fixed point theorem. We then need f to
be a contraction meaning that there is a positive real number c less than 1 such that
for any pair x, y of points the distance between the images under f of these points
is smaller by a factor c than the distance between the points x and y. In formulas
this means

|f(x)− f(y)| ≤ c|x− y|

for arbitrary x, y ∈ R. The conclusion from Banach fixed point theorem is that
there is a unique fixed point for f . This can be found by just fixing any element
z ∈ R and then forming the sequence (T n(z))∞n=1. T

n denotes the operator obtained
by composing T with itself n times, i.e. T n = T ◦ T ◦ . . . ◦ T

︸ ︷︷ ︸

n elements

. The sequence is

converging with the fixed point as the limit point. On the other hand there is no
restriction on the domain of f being a convex compact set.

We first state and prove some general observations.

Theorem 1.1. Let T be a continuous mapping on a Banach space X. Then the
following statements hold true:

1. If there exist x, y ∈ X such that

lim
n→∞

T n(x) = y

then y is a fixed point for T , i.e. T (y) = y.

2. If T (X) is a compact set in X and for each ǫ > 0 there exists a xǫ ∈ X such
that

‖T (xǫ)− xǫ‖ < ǫ

then T has a fixed point.

Proof. Set yn = T n(x), n = 1, 2, . . .. If T is a continuous mapping then

T (y) = T ( lim
n→∞

yn) = lim
n→∞

T (yn) = lim
n→∞

yn+1 = y,

which proves the first statement.

Assume that the assumptions of 2) are satisfied. Then for n = 1, 2, . . . there are
xn ∈ X such that

‖T (xn)− xn‖ <
1

n
. (1)

T (X) is a compact set which implies that there exits a convergent subsequence
(T (xnk

))∞k=1 of (T (xn))
∞
n=1. Call the limit point x. Then x is a fixed point for T since

also the sequence (xnk
)∞k=1 converges to x according to (1) and T is continuous.

We now formulate one of the main theorems.
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Theorem 1.2 (Banach’s fixed point theorem). Let T be a contraction on a Banach
space X. Then T has a unique fixed point.

Proof. Fix an arbitrary element z ∈ X and consider the sequence

(T n(z))∞n=1.

Set zn = T n(z) for n = 1, 2, . . .. We note that

‖zn − zm‖ ≤ ‖zn − zn−1‖+ . . .+ ‖zm+1 − zm‖ =

= ‖T (zn−1)− T (zn−2)‖+ . . .+ ‖T (zm)− T (zm−1)‖ ≤

≤ c‖zn−1 − zn−2‖+ . . .+ c‖zm − zm−1‖ ≤ . . . ≤

≤ (cn−1 + cn−2 + . . . cm)‖z1 − z‖ ≤
cm

1− c
‖z1 − z‖,

where we (without loss of generality) have assumed n > m ≥ 1. This yields
‖zn − zm‖ → 0 as n,m → ∞ and hence (zn)

∞
n=1 is a Cauchy sequence. Since X is a

Banach space the sequence converges, i.e. there is a x0 ∈ X such that zn → x0 as
n → ∞. Here x0 is a fixed point for T since

‖T (x0)− x0‖ ≤ ‖T (x0)− T (zn)‖+ ‖zn+1 − x0‖ ≤ c‖x0 − zn‖+ ‖zn+1 − x0‖

where the LHS is independent of n and the RHS tends to 0 as n → ∞. The
uniqueness follows from the contraction property for T . If x0 6= y0 both are fixed
points of T then we get

‖x0 − y0‖ = ‖T (x0)− T (y0)‖ ≤ c‖x0 − y0‖ < ‖x0 − y0‖

which results in a contradiction.

From the proof we see that

1. the sequence (T n(z))∞n=1 converges to the unique fixed point independently
of the choice of z.

2. for an arbitrary element x ∈ X we have

‖x− x0‖ ≤
1

1− c
‖x− T (x)‖,

where x0 denotes the fixed point of T , since

‖x− x0‖ ≤ ‖x− T (x)‖+ ‖T (x)− T (x0)‖ ≤ ‖x− T (x)‖+ c‖x− x0‖.

Banach’s fixed point theorem can be generalized in the following way.
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Theorem 1.3. Let T be a mapping on a Banach space X such that TN is a con-
traction on X for some positive integer N . Then T has a unique fixed point.

It is not necessary to assume that T is continuous.

Proof. Banach’s fixed point theorem implies that there exists a unique fixed point
for TN . Call this element x0. Now just note that

‖T (x0)− x0‖ = ‖TN(T (x0))− TN(x0)‖ ≤ c‖T (x0)− x0‖

implies that T (x0) = x0 since 0 < c < 1. The uniqueness is clear since a fixed point
for T is also a fixed point for TN .

Note that the conclusion of the previous theorem remains true if T : F → F , where
F is a closed set in the Banach space X, and TN is a contraction for some positive
integer N .

We end this section by two examples.

Example: Let K(x, y) be a continuous real-valued function for 0 ≤ y ≤ x ≤ 1
and let v(x) be a continuous real function for 0 ≤ x ≤ 1. Then there is a unique
continuous real function z(x) such that

z(x) = v(x) +

∫ x

0

K(x, y)z(y) dy, 0 ≤ x ≤ 1.

To prove this we consider the Banach space C([0, 1]) with the sup-norm and define
the integral operator L : C([0, 1]) → C([0, 1]) by

Lz(x) =

∫ x

0

K(x, y)z(y) dy.

Clearly Ln will be an integral operator on C([0, 1]) given by a kernel function
Kn(x, y). To find this function set K1(x, y) = K(x, y) and assume that Kn(x, y)
is known. Then we obtain

(Ln+1z)(x) =

∫ x

0

K(x, t)(Lnz)(t) dt =

∫ x

0

K(x, t)

∫ t

0

Kn(t, y)z(y) dy dt =

=

∫ x

0

(

∫ x

y

K(x, t)Kn(t, y) dt)z(y) dy =

∫ x

0

Kn+1(x, y)z(y) dy.

Hence

Kn+1(x, y) =

∫ x

y

K(x, t)Kn(t, y) dt, 0 ≤ y ≤ x ≤ 1.

The function K(x, y) is continuous on the closed set {(x, y) : 0 ≤ y ≤ x ≤ 1} and
so it is bounded, say

|K(x, y)| ≤ M
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for all 0 ≤ y ≤ x ≤ 1. Then again by induction we see that

|Kn(x, y)| ≤
Mn|x− y|n−1

(n− 1)!

for all 0 ≤ y ≤ x ≤ 1. Indeed if this holds for n then for 0 ≤ y ≤ x ≤ 1

|Kn+1(x, y)| ≤

∫ x

y

M
Mn|t− y|n−1

(n− 1)!
dt =

Mn+1|x− y|n

n!
.

Hence if n is sufficiently large we have

|Kn(x, y)| ≤
1

2

for 0 ≤ y ≤ x ≤ 1 and so

|(Lnz)(x)| ≤

∫ x

0

|Kn(x, y)| |z(y)| dy ≤
1

2
‖z‖,

i.e.

‖Ln‖ ≤
1

2
.

We now define T : C([0, 1]) → C([0, 1]) by Tz = v + Lz. This gives

T nz = (Σn−1
k=0L

k)v + Lnz,

which yields that T n is a contraction on C([0, 1]). By Theorem 1.3 the mapping T
has a unique fixed point.

Example: Let K(x, y) and f(y, z) be continuous real-valued functions for 0 ≤
x, y ≤ 1 and z ∈ R. Moreover let v(x) be a continuous real function for 0 ≤ x ≤ 1.
Assume that

|f(y, z1)− f(y, z2)| ≤ N |z1 − z2|

for all 0 ≤ y ≤ 1 and z1, z2 ∈ R. Our claim is that there exists a unique continuous
function z(x) on 0 ≤ x ≤ 1 such that

z(x) = v(x) +

∫ x

0

K(x, y)f(y, z(y)) dy.

As above we define L : C([0, 1]) → C([0, 1]) by

Lz(x) =

∫ x

0

K(x, y)f(y, z(y)) dy

and show that the map T : C([0, 1]) → C([0, 1]), given by

T (z) = v + Lz

has a unique fixed point. Here comes a nice trick! For a > 0 we introduce a new
norm ‖ · ‖a on C([0, 1]):

‖z‖a =

∫ 1

0

e−ay|z(y)| dy.

6



Then ‖ · ‖a is indeed a norm on C([0, 1]) which is equivalent to the L1 norm. Set
Xa = (C([0, 1]), ‖ · ‖a) and let X̃a be the completion of Xa. Clearly X̃a is the vector
space L1([0, 1]) with the norm ‖ · ‖a, and L extends to a map L̃ : X̃a → X̃a given by
the formula for L. Furthermore with

M = max
0≤x,y≤1

|K(x, y)|

we have for z1, z2 ∈ X̃a

‖L̃z1 − L̃z2‖a =

∫ 1

0

e−ay|

∫ y

0

K(y, t)(f(t, z1(t))− f(t, z2(t))) dt| dy ≤

≤ MN

∫ 1

0

∫ y

0

e−ay|z1(t)− z2(t)| dt dy = MN

∫ 1

0

∫ 1

t

e−ay|z1(t)− z2(t)| dy dt =

= MN

∫ 1

0

e−at − e−a

a
|z1(t)− z2(t)| dt ≤

MN

a
‖z1 − z2‖a.

This shows that for a > MN the map

L̃ : X̃a → X̃a

is a contraction and so is T̃ = v + L̃. It easily follows that T̃ maps X̃a into Xa, so
the unique fixed point belongs to C([0, 1]), and is also the unique fixed point for T .

Another version of the trick above is to equip C([0, 1]) with the norm

|z|a = sup
x∈[0,1]

|e−axz(x)|

with a large enough, which is equivalent to the standard sup-norm on C([0, 1]). The
reader is asked to check that the calculations above go through, i.e. L will be a
contraction in (C([0, 1]), | · |a). An advantage here is that we do not need to consider
any completion X̃a.

1.3 Brouwer and Schauder fixed point theorems

Let us formulate Brouwer’s fixed point theorem.

Theorem 1.4 (Brouwer’s fixed point theorem). Assume that K is a compact convex
subset of R

n and that T : K → K is a continuous mapping. Then T has a fixed
point in K.

Observe that it does not follow from Brouwer fixed point theorem that the fixed
point is unique. Consider for instance the identity operator on a compact convex
set K in R

n for which every x ∈ K is a fixed point.

Example 1: Take a street map for Goteborg and place it on the floor of a lecture
room at Chalmers, say room MVF31. Then there will be a point on the map
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that coincides with the corresponding point in Goteborg. This follows from both
Banach’s fixed point theorem and Brouwer’s fixed point theorem, where the former
theorem also gives that the point is unique. Prove this to yourself!

Example 2: Let Tα denote the rotation α degrees around the center for a closed
disc K of radius 1. Then Brouwer’s fixed point theorem gives the existence of a
fixed point for Tα (of course it is overkill to use a fixed point theorem to see that)
while Banach’s fixed point theorem cannot be applied directly2 since Tα is not a
contraction. It is obvious that the center of K is a fixed point but Brouwer’s fixed
point theorem also tells us that it is not possible to compose the rotation with
a continuous deformation of the disc into itself in such a way that the composed
mapping has no fixed point.

We note that

• (generalization of Brouwer’s fixed point theorem): If there exists a homeomor-
phism, i.e. a continuous bijection with continuous inverse, between a compact
convex set K in R

n and a set K̃, call the homeomorphism ϕ, and T̃ : K̃ → K̃
is a continuous mapping then T̃ has a fixed point. To see this consider the
mapping T = ϕ−1 ◦ T̃ ◦ ϕ.
Exercise: Prove that T̃ has a fixed point.

• it is enough to prove Brouwer fixed point theorem in the case K = B(0, 1),
where B(a, r) = {x ∈ R

n : ‖x− a‖ < r}.

There are many proofs for Brouwer’s fixed point theorem, both analytical, topolog-
ical and also combinatorial. One starting point for a proof could be the following.
Assume that K = B(0, 1) and that T has no fixed point. Define the mapping
A : B(0, 1) → B(0, 1) as follows: For every inner point x in B(0, 1) let x̃ denote
the point on the boundary ∂B(0, 1) that is the intersection of the ray from T (x)
through x and the boundary ∂B(0, 1). The ray is always well-defined since T has
no fixed point. Now set

A(x) =

{
x̃ if x ∈ B(0, 1)
x if x ∈ ∂B(0, 1)

Then A is a continuous mapping from B(0, 1) into ∂B(0, 1) (verify this!) such
that A|∂B(0,1) = I|∂B(0,1). The challenge to show that T has no fixed point is now

reformulated as to show that there is no continuous mapping A : B(0, 1) → ∂B(0, 1)
such that A|∂B(0,1) = I|∂B(0,1). The statement that there is no such mapping is deep
but never the less intuitively obvious. Consider, for n = 2, an elastic membrane fixed
on a circular frame. The existence of a mapping A implies that it should be possible

2Assume that the disc has its center at the origin in R
n. Apply Banach’s fixed point theorem

to the operators Tn = (1− 1

n
)T, n = 1, 2, . . .. We obtain a sequence of fixed points xn to Tn such

that

‖T (xn)− xn‖ ≤
1

n
, n = 1, 2, 3, . . . .

The result follows from Theorem 1.1 above.
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to deform the membrane continuously in such a way that it in the end coincides
with the frame without being fractured. For fixed x ∈ B(0, 1) the mapping

t 7→ (1− t)x+ tA(x), t ∈ [0, 1]

describes how this point on the membrane is moved from x at t = 0 to A(x) ∈
∂B(0, 1) at t = 1, under the deformation. Do not forget that the membrane should
be fixed at the frame!!!

A beautiful proof based on Sperner’s lemma will be indicated in the Exercises [6].

We present Perron’s theorem as an application of Brouwer’s fixed point theorem.
Schauder’s fixed point theorem will be applied in the context of nonlinear differen-
tial/integral equations to prove the existence of solutions.

Theorem 1.5 (Perron’s theorem). Let A be a real n×n–matrix with positive entries.
Then there exists a positive eigenvalue for the linear mapping given by the matrix
A, with an eigenvector with positive entries

To prove Perron’s theorem let K denote the set

{(x1, . . . , xn) : xi ≥ 0 all i, Σn
i=1xi = 1}

and define T (x) = Ax/‖Ax‖l1 for x ∈ K. Apply Brouwer’s fixed point theorem.

In a finite-dimensional normed space compactness is equivalent to closedness and
boundedness. This is not the case in an infinite-dimensional normed space. The
following example due to Kakutani should be compared to the next fixed point
theorem due to Schauder.

Example: Let B denote the closed unit ball in l2(Z), where l2(Z) consists of all

elements x = (. . . , x−1, x0, x1 . . .) such that ‖x‖ = (Σ∞
n=−∞|xn|

2)
1

2 < ∞. It is clear
that B is convex and bounded. Let z be the element in l2(Z) that satisfies z0 = 1
and zn = 0 for n 6= 0 and let S denote the shift operator defined by (S(x))n = xn−1

for n ∈ Z. Now set
T : l2(Z) → l2(Z),

where
T (x) = S(x) + (1− ‖x‖)z.

For x ∈ B we have
‖T (x)‖ ≤ ‖S(x)‖+ (1− ‖x‖) = 1,

i.e. T (x) ∈ B. But T has no fixed point in B since

(T (x))n = xn−1, n 6= 0

and
(T (x))0 = x−1 + (1− ‖x‖),

which implies that x0 = x1 = . . . = xn = . . . and x−1 = x−2 = . . . = x−n = . . .. This
yields a contradiction since x ∈ l2(Z).
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From this example we see that a generalization of Brouwer’s fixed point theorem to
infinite-dimensional spaces should have the assumption that T (K) is a compact set.
We next formulate two versions of Schauder’s fixed point theorem.

Theorem 1.6 (Schauder’s fixed point theorem). Assume that K is a convex compact
set in a Banach space X and that T : K → K is a continuous mapping. Then T
has a fixed point.

For applications the following generalization proves to be useful.

Theorem 1.7 (generalization of Schauder’s fixed point theorem). Let F be a closed
convex set in a Banach space X and assume that T : F → F is a continuous
mapping such that T (F ) is a relatively compact subset of F . Then T has a fixed
point.

We recall that a set K1 ⊂ X is compact3 if every sequence in K1 has a convergent
subsequence in K1. Moreover we say that K2 ⊂ X is relatively compact if every
sequence in K2 has a subsequence that converges in X. The limit element of the
converging sequence belongs to K2. The set K2 being relatively compact implies
that K2 is a compact set. Also an arbitrary subset of a compact set is relatively
compact.

To prove Schauder’s fixed point theorem we will make use of some new concepts and
facts for compact sets. We say that the convex hull of a set F , denoted by coF , is
the set defined by

⋂

F⊂H,H convex

H.

By a convex combination of the elements x1, x2, . . . , xn we mean a linear combination
Σn

i=1λixn, where all λi ≥ 0 and Σn
i=1λi = 1. An ǫ–net is a subset Fǫ of F with the

property that for each x ∈ F there exists a y ∈ Fǫ such that ‖x− y‖ < ǫ.

Proposition 1.1. The following statements are true:

1. A set F is relatively compact iff for each ǫ > 0 there exists a finite ǫ–net.

2. A set K is compact iff it is closed and for every ǫ > 0 there exists a finite
ǫ–net.

3. The set coF is the same as the set of all convex combination of finitely many
elements in F .

4. K compact set implies that coK is compact.

3This definition of compactness and relative compactness is sometimes referred to as sequential
compactness and sequential relatively compactness in the literature. The words compactness and
relatively compactness are then reserved to mean the following: A set K in a normed space is
called compact if for each open cover of K there is a finite subcover. An open cover of K is a
collection of open sets Oλ, λ ∈ Λ, whose union contains K as a subset. A finite subcover is a finite
subset of {Oλ}λ∈Λ whose union also contains the set K. It can be shown that for metric spaces X
the notions sequentially compact and compact are equivalent.
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The proof is left as an exercise.

Proof. (of the Schauder theorems) The second Schauder theorem is a consequence
of the first one. To see this assume that the hypothesis of the second theorem are
satisfied. It then follows that the closed hull R of R = T (F ) is compact and so also

coR. Set K = coR. We see that K ⊂ F since F is closed and convex. Moreover
T : K → K is continuous. Hence the second theorem follows from the first theorem.

It remains to prove the first theorem. This will be done by approximating the
compact set K by compact sets Kn, n = 1, 2, . . . in finite-dimensional spaces and
approximating the mapping T by continuous mappings Tn : Kn → Kn, where the
approximation becomes better and better for larger n. Brouwer’s fixed point theorem
gives a sequence of fixed points (xn) for the sequence (Tn), from which a converging
subsequence of points (xnk

) can be extracted. The limit element of this sequence
will be a fixed point for T .

For every positive integer n we define mappings Pn, called Schauder projections,
as follows: The compactness of K implies that there are finitely many elements
x1, . . . , xk ∈ K such that

K ⊂

k⋃

i=1

B(xi,
1

n
).

Set

fi(x) = max(0,
1

n
− ‖x− xi‖), i = 1, . . . , k.

For every x ∈ K there exists an i such that fi(x) > 0. This implies that Σk
i=1fi(x) >

0 for all x ∈ K. Now set Kn = co{x1, . . . , xk} and

Pn(x) =
Σk

i=1fi(x)xi

Σk
i=1fi(x)

, x ∈ K.

Finally we define Tn = PnT |Kn
. We can now apply Brouwer’s theorem to every

mapping
Tn : Kn → Kn, n = 1, 2, . . .

This yields a sequence of fixed points x̃n for Tn, i.e.

PnT (x̃n) = x̃n,

and hence we get

‖T (x̃n)− x̃n‖ <
1

n
.

Schauder’s theorem now follows from Theorem 1.1.

1.4 Continuity and applications

To apply the fixed point theorems above some results for continuous functions will
often be used.

11



Theorem 1.8. Assume that T is a continuous mapping between two Banach spaces
X and Y . Then the following statements are true:

1. If K is a compact set in X then T (K) is a compact set in Y .

2. If Y = R then T attains its maximum and its minimum on every compact set
K in X, i.e. there are x0, x1 ∈ K such that

sup
x∈K

f(x) = T (x0) = max
x∈K

T (x)

and
inf
x∈K

T (x) = T (x1) = min
x∈K

T (x).

3. T is uniformly continuous on every compact set in X.

The different notions of continuity that will be used are the following:
Let T : X → Y be a mapping between two Banach spaces. Then T is called

continuous if for each x ∈ X and each ǫ > 0 there exists a δ = δ(x, ǫ) > 0 such
that for every y ∈ X

‖y − x‖X < δ ⇒ ‖T (y)− T (x)‖Y < ǫ.

uniformly continuous on A, where A ⊂ X, if for each ǫ > 0 there exists a
δ = δ(ǫ) > 0 such that for every x, y ∈ A we have

‖y − x‖X < δ ⇒ ‖T (y)− T (x)‖Y < ǫ.

If Tλ : X → Y , λ ∈ Λ is a set of mappings (finitely many or infinitely many) between
two Banach spaces then these are called

equicontinuous on A, where A ⊂ X, if for each ǫ > 0 there exists a δ = δ(ǫ) > 0
such that for every pair of elements x, y ∈ A and every λ ∈ Λ we have

‖y − x‖X < δ ⇒ ‖Tλ(y)− Tλ(x)‖Y < ǫ.

Proof. (of Theorem 1.8) To prove statement 1) let T : X → Y be a continuous
mapping and K a compact set in X. Pick an arbitrary sequence (yn) ⊂ T (K). Then
there exists a sequence (xn) in K such that T (xn) = yn for all n. The sequence (xn)
might not be uniquely determined since T is not assumed to be injective. But since
K is a compact set there exists a convergent subsequence (xnk

) of (xn) in K, i.e.
there is an element x ∈ K such that xnk

→ x as k → ∞. Moreover since T is
continuous we have

xnk
→ x ⇒ ynk

= T (xnk
) → T (x) ∈ T (K).

This proves 1).
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The proof of statement 2) is left as an exercise.

To prove statement 3) assume that K is a compact set of X and that T : X → Y is
continuous. Moreover assume that T is not uniformly continuous on K. Then there
exists an ǫ > 0 such that for all positive integers n there are points xn, yn ∈ K such
that

‖yn − xn‖X <
1

n
(2)

and
‖T (yn)− T (xn)‖Y ≥ ǫ. (3)

But K is a compact set and so there exists a convergent subsequence (xnk
) of (xn),

i.e. for some x ∈ K we have xnk
→ x. From (2) it follows that ynk

→ x since we
have

‖ynk
− x‖X ≤ ‖ynk

− xnk
‖X + ‖xnk

− x‖X .

Moreover T is continuous and so T (xnk
) → T (x) and T (ynk

) → T (x). This gives a
contradiction of (3). The statement 3) is proved.

The Banach spaces that will be used in applications are C(A) and Lp(A), 1 ≤ p < ∞.
Here A stands for different subsets of R

n for n ≥ 1. Of course the norms should be
the proper ones e.g. the sup-norm should be used for C(A). We tacitly understand
that the proper norm is used unless something else is stated. In the context of
Schauder’s fixed point theorem it is important to be able to conclude whether or
not a subset of C(A) or Lp(A) is compact. Our next result answers that question
for the case C(A).

Theorem 1.9 (Arzela-Ascoli theorem). Assume that K is a compact set in R
n,

n ≥ 1 (e.g. K = [a, b] ⊂ R). Then a set S ⊂ C(K) is relatively compact in C(K)
iff the functions in S are uniformly bounded and equicontinuous on K.

To say that the functions in S are uniformly bounded means that there exists a
M > 0 such that

‖f‖ = sup
x∈K

|f(x)| ≤ M all f ∈ S.

To say that the functions in S are equicontinuous on K means that for every ǫ > 0
there exists an δ > 0 such that for every x, y ∈ K and every f ∈ S we have

|x− y| < δ ⇒ |f(x)− f(y)| < ǫ.

The Arzela-Ascoli theorem can be generalized to the whole of R
n if we assume that

the functions uniformly tends to 0 at infinity i.e. as |x| → ∞.

Next we formulate a criteria for compactness for sets of Lp-functions.

Theorem 1.10 (Riesz, Kolmogorov). Assume that 1 ≤ p < ∞ and that S ⊂ Lp(Rn).
Then S is relatively compact in Lp(Rn) iff the following conditions are satisfied:

1. S is a bounded set in Lp(Rn), i.e. there exists a M > 0 such that ‖f‖Lp ≤ M
for all f ∈ S,

13



2. limx→0

∫

Rn |f(y + x)− f(y)|p dy = 0 uniformly in S, i.e. for every ǫ > 0 there
exists a δ > 0 such that

|x| < δ och f ∈ S ⇒ ‖f(·+ x)− f(·)‖ ≡ (

∫

Rn

|f(y + x)− f(y)|p dy)1/p < ǫ,

3. limR→∞ ‖f‖Lp(Rn\B(0,R)) = (
∫

|x|>R
|f(x)|p dx)1/p = 0 uniformly in S, i.e. for

every ǫ > 0 there exists a ω > 0 such that

R > ω och f ∈ S ⇒ (

∫

|x|>R

|f(x)|p dx)1/p < ǫ.

The above results can be found in most textbooks on functional analysis.

We are now ready to apply Schauder’s theorem. Note the difference between
Schauder’s theorem and Banach’s theorem, namely to apply Banach’s theorem we
have to show that a mapping is “sufficiently small”, while to apply Schauder’s the-
orem we have to prove that a mapping is compact. This means, in the C(A) or
Lp case, that we have to show that the image set for the mapping consists of more
“regular” functions.

Example (an integral equation of Hammerstein-type): Assume that K(x, y)
is a continuous function for 0 ≤ x, y ≤ 1 and that f(y, z) is a bounded continuous
function for 0 ≤ y ≤ 1 and z ∈ R. Then the equation

z(x) =

∫ 1

0

K(x, y)f(y, z(y)) dy

has a continuous solution z(x).

We want to prove that T (z), z ∈ C([0, 1]), has a fixed point where

(T (z))(x) =

∫ 1

0

K(x, y)f(y, z(y)) dy.

To show this we will apply the generalization of Schauder’s fixed point theorem. We
will choose a closed convex subset S ⊂ C([0, 1]) such that the mapping T : S →
C([0, 1]) is continuous and such that the image set T (S) is relatively compact in
C([0, 1]).

First we observe that T maps continuous functions to continuous functions, i.e. that
we have

T (C([0, 1])) ⊂ C([0, 1]).

This can be seen as follows: From the hypothesis there exists a B > 0 such that

|f(y, z)| ≤ B if (y, z) ∈ [0, 1]× R.

Moreover K(x, y) is continuous on the compact set [0, 1] × [0, 1] and hence K is
uniformly continuous on [0, 1]× [0, 1]. Fix an ǫ > 0. Then there exists a δ > 0 such
that

|K(x, y)−K(x̃, ỹ)| <
ǫ

B
if |(x, y)− (x̃, ỹ)| < δ.
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Consequently for any z ∈ C([0, 1]) we have

|(T (z))(x)− (T (z))(x̃)| = |

∫ 1

0

(K(x, y)−K(x̃, y))f(y, z(y)) dy| ≤

≤

∫ 1

0

|K(x, y)−K(x̃, y)||f(y, z(y))| dy ≤ B

∫ 1

0

|K(x, y)−K(x̃, y)| dy < ǫ

provided |x− x̃| < δ. This means that T (z) ∈ C([0, 1]).

A natural choice for the closed convex set S is

S = {z ∈ C([0, 1]) : ‖z‖ ≤ D},

where D > 0 is a constant that should be chosen such that T (S) ⊂ S. We note that
since K is continuous on the compact set [0, 1] × [0, 1] there exists an A > 0 such
that

|K(x, y)| ≤ A if (x, y) ∈ [0, 1]× [0, 1].

This implies that

|(T (z))(x)| = |

∫ 1

0

K(x, y)f(y, z(y)) dy| ≤

∫ 1

0

|K(x, y)||f(y, z(y))| dy ≤ AB

for z ∈ C([0, 1]). Hence we get
‖T (z)‖ ≤ D

provided we choose D ≥ AB. Set D = AB. With this choice for S we get

T (S) ⊂ S.

To apply Schauder’s theorem we have to show that T (S) is relatively compact in
C([0, 1]) and that T is continuous on S. The relatively compactness is consequence
of Arzela-Ascoli theorem once we have shown that T (S) is uniformly bounded and
equicontinuous on S.

We have above verified that T (C([0, 1])) is uniformly bounded and equicontinuous
on S. It remains to prove that T : S → T (S) is continuous. From the definition of S
it follows that |z(x)| ≤ D for all x ∈ [0, 1]. The continuity of f(y, z) on the compact
set [0, 1] × [−D,D] implies that f is uniformly continuous on [0, 1] × [−D,D]. Fix
an arbitrary ǫ > 0. Then there exists a δ > 0 such that

|f(y, z)− f(ỹ, z̃)| <
ǫ

A
if |(y, z)− (ỹ, z̃)| < δ.

Hence for arbitrary z1, z2 ∈ S with ‖z1 − z2‖ < δ we have

‖T (z1)− T (z2)‖ = sup
x∈[0,1]

|

∫ 1

0

K(x, y)(f(y, z1(y))− f(y, z2(y))) dy| ≤

≤ sup
x∈[0,1]

∫ 1

0

|K(x, y)||(f(y, z1(y))− f(y, z2(y)))| dy ≤

≤ A

∫ 1

0

|(f(y, z1(y))− f(y, z2(y)))| dy < ǫ.

Now we have shown that T is continuous on S. Schauder’s fixed point theorem
implies that the equation z = T (z) has at least one solution.
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1.5 Some more fixed point theorems

We conclude this note with some additional fixed point theorems. The first one,
Schaefer’s fixed point theorem, is a version of Schauder’s theorem. Sometimes it is
called the Leray-Schauder principle and is an example of the mathematical principle
saying ”apriori estimates implies existence”. The second one, Krasnoselskii’s fixed
point theorem, is a mix of Banach’s and Schauder’s fixed point theorems.

Theorem 1.11 (Schaefer’s fixed point theorem). Assume that X is a Banach space
and that T : X → X is a continuous compact4 mapping. Moreover assume that the
set ⋃

0≤λ≤1

{x ∈ X : x = λT (x)}

is bounded. Then T has a fixed point.

Proof. Assume that the mapping T satisfies the hypothesis in the theorem. Pick a
R > 0 such that

x = λT (x) and 0 ≤ λ ≤ 1

implies that
‖x‖ < R.

Define the mapping T̃ : X → X as follows:

T̃ (x) =







T (x) if ‖T (x)‖ ≤ R

R
‖T (x)‖

T (x) if ‖T (x)‖ > R

This implies that T̃ : X → X is a compact operator. To show this take a
bounded sequence (xn)

∞
n=1 in X. Then there exists a subsequence (xnk

)∞k=1 such
that ‖T (xnk

)‖ < R for all k or ‖T (xnk
)‖ ≥ R for all k. In the first case (T̃ (xnk

))∞k=1

has a convergent subsequence since T̃ (xnk
) = T (xnk

) and T is a compact mapping.
In the second case we get that (T (xnk

))∞k=1 has a convergent subsequence, denote it
by (T (xl))

∞
l=1 for convenience. But then it follows that also (‖T (xl)‖)

∞
l=1 converges,

where also ‖T (xl)‖ ≥ R for all l. Hence we have T̃ (xl) =
R

‖T (xl)‖
T (xl).

Set

K = co T̃ (B(0, R)).

Here K is convex (it is the closed convex hull of a set), compact (the convex hull of
a compact set is compact and T̃ is a compact mapping) subset of X such that

T̃ : K → K.

Schauder’s fixed point theorem implies that T̃ has a fixed point x0 ∈ K. But x0

is a fixed point for T if ‖T (x0)‖ ≤ R. Assume that ‖T (x0)‖ > R. This yields a

4T is a compact mapping if (T (xn))
∞

n=1 has a convergent subsequence for every bounded se-
quence (xn)

∞

n=1 in X. Usually by a compact (or completely continuous) mapping one means a
continuous mapping with the property above. For linear mappings the continuity follows from this
property but it is not true in general for nonlinear mappings.
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contradiction since x0 = T̃ (x0) = λT (x0), where λ = R
‖T (x0)‖

∈ (0, 1), since according

to the hypothesis of the theorem it should follow that ‖T (x0)‖ = ‖x0‖ < R. This
proves the theorem.

Note that to apply Schaefer’s theorem we do not need to prove that a certain set
is convex or compact. The problem is reformulated as to show a certain a priori
estimate for the operator T .

Theorem 1.12 (Krasnoselskii’s fixed point theorem). Assume that F is a closed
bounded convex subset of a Banach space X. Furthermore assume that T1 and T2

are mappings from F into X such that

1. T1(x) + T2(y) ∈ F for all x, y ∈ F ,

2. T1 is a contraction,

3. T2 is continuous and compact.

Then T1 + T2 has a fixed point in F .

Proof. Assume that the mappings T1, T2 satisfies the hypothesis of the theorem. In
particular there exists a c ∈ (0, 1) such that

‖T1(x)− T1(y)‖ ≤ c‖x− y‖, x, y ∈ F.

This yields

‖(I − T1)(x)− (I − T1)(z)‖ ≥ ‖x− z‖ − ‖T1(x)− T1(z)‖ ≥ (1− c)‖x− z‖

and

‖(I − T1)(x)− (I − T1)(z)‖ ≤ ‖x− z‖+ ‖T1(x)− T1(z)‖ ≤ (1 + c)‖x− z‖.

Consequently I − T1 : F → (I − T1)(F ) is a homeomorphism, and (I − T1)
−1 exists

as a continuous mapping from (I−T1)(F ). Furthermore we note that for each y ∈ F
the equation

x = T1(x) + T2(y)

has a unique solution x ∈ F according to Banach’s fixed point theorem. From this we
conclude that T2(y) ∈ (I−T1)(F ) for every y ∈ F and also that (I−T1)

−1T2 : F → F
is a well-defined continuous mapping. Since T2 is a compact mapping it follows that
(I−T1)

−1T2 : F → F is a compact mapping. Finally the generalization of Schauder’s
fixed point theorem yields the conclusion of the theorem.

We recommend anyone interested in fixed point theorems to browse through the
books [7] and [3] where additional results and many more references can be found.
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