Homework assignment 1

Deadline 2017-09-14

- **Problem 1** : Let $(E, \|\cdot\|)$ be a normed space with a subspace Y. Show that \overline{Y} is a subspace of E.
- **Problem 2** : Let $l^{\infty} = \{ \mathbf{x} \in \mathbb{R}^{\infty} : \sup_{n} |x_{n}| < \infty \}$ and $c = \{ \mathbf{x} \in l^{\infty} : \lim_{n \to \infty} x_{n} \text{ exists} \}$ be real vector spaces with the addition and multiplication as in \mathbb{R}^{∞} . Let both l^{∞} and c be equipped with the norm $\|\mathbf{x}\|_{\infty} = \sup_{n} |x_{n}|$. Show that
 - 1. l^{∞} and c are Banach spaces
 - 2. $\|\mathbf{x}\|_{\infty} = \lim_{n \to \infty} (\lim_{p \to \infty} (\sum_{k=1}^{n} |x_n|^p)^{\frac{1}{p}})$ for $\mathbf{x} \in l^{\infty}$.
- **Problem 3** : Let $(E, \|\cdot\|)$ be a normed space. Let B(a; r) denote the open ball in E around $a \in E$ with radius r > 0. Prove that
 - 1. $\overline{B(a;r)} = \{x \in E : ||x a|| \le r\}$ for each $a \in E$ and r > 0,
 - 2. if $B(a;r) \subset B(b;s)$ then $r \leq s$ and $||a b|| \leq s r$,
 - 3. and, if $(E, \|\cdot\|)$ is a Banach space, then every nested sequence of nonempty closed balls (i.e. closures of open balls) has nonempty intersection.
- **Problem 4** : Let $C^1([0,1])$ be the vector space of all continuously differentiable functions $f:[0,1] \to \mathbb{R}$. Show that
 - 1. $C^{1}([0,1])$ with the norm ||f|| + ||f'|| is a Banach space,
 - 2. $C^{1}([0,1])$ with the norm ||f|| is not a Banach space.

Here ||f|| denotes $\max_{x \in [0,1]} |f(x)|$.