Homework assignment 2

Deadline 2017-09-28

Problem 1: Suppose $L \in (0, \sqrt{(\sqrt{5}-1)/2})$. Show that the equation

$$f(x) - \int_0^L \sqrt{1 + (x - y)^2} \cos(f(y)) \, dy = \sin(e^x), \ x \in [0, L]$$

has a unique solution $f \in C([0, L])$.

Problem 2: Assume that \mathcal{M} is a subset of C([0,1]) such that there are constants m, L > 0 such that $|f(\frac{1}{2})| \leq m$ for all $f \in \mathcal{M}$ and

 $|f(x) - f(\tilde{x})| \le L|x - \tilde{x}|$ for all $f \in \mathcal{M}$ and all $x, \tilde{x} \in [0, 1]$.

Show that \mathcal{M} is relatively compact in C([0, 1]).

Problem 3: Let $(E, \|\cdot\|)$ be a normed space. Set

$$T(x) = \begin{cases} x & \text{if } ||x|| \le 1, \\ \\ \frac{1}{||x||} x & \text{if } ||x|| > 1. \end{cases}$$

- 1. Show that $||T(x) T(\tilde{x})|| \le 2||x \tilde{x}||$ for all $x, \tilde{x} \in E$.
- 2. Show that the constant 2 cannot be improved in general. Take $E = \mathbb{R}^2$ with $\|\cdot\| = \|\cdot\|_{l^1}$.
- 3. What can be said if E is a Hilbert space with the norm given by the inner product?
- **Problem 4:** Let E denote the real vector space C([0, 1]) equipped with the norm $||f|| = \max_{x \in [0,1]} |f(x)|$ and let $T : E \to E$ be a linear mapping. Assume that $Tf(x) \ge 0$ for all $x \in [0, 1]$ provided $f(x) \ge 0$ for all $x \in [0, 1]$. Show that
 - 1. T is continuous
 - 2. $||T|| = \sup_{x \in [0,1]} T\mathbf{1}(x)$ where **1** denotes the constant function taking the value 1.
 - 3. Let $U: E \to E$ be defined by $Uf(x) = \int_0^1 e^{xt} f(t) dt$ and the sequence $U_n: E \to E, n = 1, 2, 3, \ldots$ be defined by

$$U_n f(x) = \int_0^1 \sum_{k=0}^n \frac{(tx)^k}{k!} f(t) \, dt.$$

Prove that $||U_n - U|| \to 0$.