MATEMATIK Chalmers tekniska högskola och Göteborgs universitet

Functional Analysis ENM, TMA401/ Applied Functional Analysis GU, MMA400, Date: 2012-01-12 (4 hours)

Aids: Just pen, ruler and eraser. Teacher on duty: Emil Gustavsson, 0703-088304

Note:	Write your name and personal number on the cover.
	Write your code on every sheet you hand in.
	Only write on one page of each sheet. Do not use red pen.
	Do not answer more than one question per page.
	State your methodology carefully. Write legibly.
	Questions are not numbered by difficulty.
	Sort your solutions by the order of the questions.
	Mark on the cover the questions you have answered.
	Count the number of sheets you hand in and fill in the number on the cover.
	To pass requires 10 points.

1. Show that the following boundary value problem

$$u''(x) - u(x) + \frac{1}{2}(1 + u(x^2)) = 0, \quad 0 \le x \le 1, u(0) = u'(0) = 0, u \in C^2([0, 1])$$

has a unique solution.

(4p)

2. For $f \in L^2([0,1])$ set

$$Tf(x) = \int_{\sqrt{x}}^{1} \frac{1}{x+t} f(t) dt, \ 0 \le x \le 1.$$

Show that T is a bounded linear operator on $L^2([0,1])$ and calculate T^* . Is T a compact operator?

(4p)

- 3. Let $(e_n)_{n=1}^{\infty}$ be an ON-basis in a complex Hilbert space H with norm $\|\cdot\|$. Assume that $(f_n)_{n=1}^{\infty}$ is a sequence in H with the properties
 - (a) $\sup_{n=1,2,3,...} \|f_n\| < \infty$
 - (b) $f_n \in \{e_1, e_2, ..., e_n\}^{\perp}$ for all n.

Show that $(f_n)_{n=1}^{\infty}$ converges weakly in H.

(4p)

4. Formulate and prove the Riesz representation theorem.

(5p)

5. State and prove¹ the orthogonal projection theorem.

(4p)

- 6. Prove the following statements:
 - (a) For $p, r \in [1, \infty)$ and $f \in C([0, 1] \times [0, 1])$ define

$$||f||_{L^{r,p}} = \left(\int_0^1 (\int_0^1 |f(x,y)|^p \, dy)^{\frac{r}{p}} \, dx\right)^{\frac{1}{r}}.$$

Then $\|\cdot\|_{L^{r,p}}$ defines a norm on $C([0,1]\times[0,1])$.

(b) For $p \in (0, \infty)$ and $f \in C([0, 1])$ define

$$||f||_{L^p} = (\int_0^1 |f(x)|^p \, dx)^{\frac{1}{p}}.$$

If $\|\cdot\|_{L^p}$ defines a norm on C([0,1]) then² $p \ge 1$.

(4p)

For information on the announcement of results see the course homepage where also solutions to the problems will be presented.

GOOD LUCK! PK

 $^{^1\}mathrm{If}$ the "closest point property-proposition" is used it should be stated and proved.

²Hint: The inequality $(a+b)^{p} < a^{p} + b^{p}$ for a, b > 0 and 0 might be useful.