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1. Consider the differential operator L = ( d

dx
)2 defined on C2([0, 1])

with boundary conditions u(0) = u′(1) and u′(0) = u(1). Calculate

(a) the corresponding Green´s function g(x, t), and

(b) prove that the boundary value problem






u′′(x) = sin(
√

|u(x2)| + 1), x ∈ [0, 1],

u(0) = u′(1), u′(0) = u(1)

has a unique solution u ∈ C2([0, 1]).

(4p)

2. Let

M = {f ∈ L2([0, 1]) :

∫

1

0

f(x) dx =

∫

1

0

xf(x) dx =

∫

1

0

x2f(x) dx = 0}.

Given h ∈ L2([0, 1]) find a formula for the function in M which is
closest to h (in the L2([0, 1])-norm).

(4p)

3. Assume that k : [0,∞) → R is a continuous function with
∫

∞

0

|k(y)| dy < ∞.

Set

Kf(x) =

∫

∞

0

k(x + y)f(y) dy, x ∈ [0,∞).

Show that K is a bounded linear operator on L2([0,∞)). Also
show that K is compact.



(4p)

4. State and prove Banach´s fixed point theorem.

(5p)

5. Let T be a bounded linear operator on a Hilbert space H. Show
that

R(T ∗) = N (T )⊥.

(4p)

6. Let H be a Hilbert space and T a compact self-adjoint operator
on H with a complete ON-sequence (en)∞

n=1
of eigenvectors cor-

responding to the eigenvalues (λn)∞
n=1

. Show that if λ 6= 0 and
λ 6= λn, n = 1, 2, 3, . . . then λI − T is invertible and

(λI − T )−1(x) =
1

λ
(x + Σ∞

n=1

λn

λ − λn

〈x, en〉en), x ∈ H.

(4p)

For information on the announcement of results see the course homepage where
also solutions to the problems will be presented.

GOOD LUCK! PK
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