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1. Let f ∈ C([0, 1]) and λ ∈ R with |λ| < 8. Show that the boundary
value problem u′′ − λ

√
1 + |u(x)|2 = f(x), x ∈ [0, 1]

u(0) = u(1) = 0

has a unique solution u ∈ C2([0, 1]).

(4p)

2. Let T : C([0, 1])→ C([0, 1]) be defined by

Tf(x) =

∫ x

0

f(t) dt, x ∈ [0, 1],

where C([0, 1]) is equipped with the max-norm. Show that

(a) T is not a contraction,

(b) T has a unique fixed point,

(c) T 2 is a contraction, and

(d) what could be said about the convergence of the sequence
of iterates (T nf)∞n=1 for a general f ∈ C([0, 1])? Prove your
statement.

(4p)

3. Let E be the Hilbert space l2 with the standard inner product.
For each x = (x1, x2, x3, . . . , xn, . . .) ∈ l2 consider the right and
left shift operators

Srx = (0, x1, x2, x3, . . . , xn, . . .)



and
Slx = (x2, x3, . . . , xn, . . .)

respectively. Then

(a) determine the operator norms ‖Sr‖ and ‖Sl‖ and whether any
of Sr, Sl is/are compact,

(b) show that Sr has no eigenvalues,

(c) show that σ(Sr) = [−1, 1],

(d) show that every λ ∈ (−1, 1) is an eigenvalue for Sl and deter-
mine the corresponding eigenspace and

(e) prove that σ(Sl) = [−1, 1].

(4p)

4. State and prove Riesz representation theorem. Show that the as-
sumption of ”Hilbert space” in the theorem cannot be relaxed to
”inner product space”.

(5p)

5. Let X, Y be Banach spaces. We say that Tn → T uniformly if
‖Tn− T‖ → 0 as n→∞ where ‖ · ‖ denotes the operator norm in
B(X, Y ). Moreover we say that Tn → T strongly if Tnx → Tx in
Y for every x ∈ X. Show that

(a) uniform convergence in B(X, Y ) implies strong convergence in
B(X, Y ), and

(b) give an example of a sequence Tn ∈ B(E,E), where E is a
Hilbert space, that converges strongly but not uniformly in
B(E,E).

(4p)

6. Let (xn)∞n=1 be a weakly converging sequence in a Hilbert space E.
Show that

sup
n=1,2,3,...

‖xn‖ <∞.

Also show that if x denotes the weak limit af the sequence (xn)∞n=1

than
‖x‖ ≤ lim

n→∞
inf
k≥n
‖xk‖.

(4p)

For information on the announcement of results see the course homepage where
also solutions to the problems will be presented.
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