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Course diary — What has happened?

Week 1 Discussion of introductory example, see section 1. Definition of real/complex vector
space, remark on existence of unique zero vector and inverse vectors, example of real
vector spaces (sequence spaces and function spaces). Hölder and Minkowski inequal-
ities. Introducing (the to all students very well-known concepts) linear combination,
linear independence, span of a set, (vector space-) basis (= Hamel basis) with examples.
All vector spaces have basis (using Axiom of choice/Zorn’s lemma; it was not proven
but stated). Introducing norms on vector spaces with examples, equivalent norms, con-
vergence of sequences in normed spaces, showed that C([0, 1]) can be equipped with
norms that are not equivalent. Stated and proved that all norms on finite-dimensional
vector spaces are equivalent. A proof of this is supplied below. Also mentioned that all
infinte-dimensional vector spaces can be equipped with norms that are not equivalent
(easy to prove once we have a Hamel basis).

Theorem 0.1. Suppose E is a vector space with dim(E) < ∞. Then all norms on E
are equivalent.

Proof: We observe that the relation that two norms are equivalent is transitive, so it
is enough to show that an arbitrary norm ‖ · ‖ on E is equivalent to a fixed norm ‖ · ‖∗
on E. Let x1, x2, . . . , xn, where n = dim(E), be a basis for E. This means that for every
x ∈ E there are uniquely defined scalars αk(x), k = 1, 2, . . . , n, such that

x = α1(x)x1 + α2(x)x2 + . . .+ αn(x)xn.

Set ‖x‖∗ = |α1(x)|+ |α2(x)|+ . . . |αn(x)| for x ∈ E.
Claim: ‖ · ‖∗ defines a norm on E
It is easy to prove that the three axioms for being a norm are satisfied (and is left as an
exercise). We note that

‖x‖ = ‖α1(x)x1 + α2(x)x2 + . . .+ αn(x)xn‖ ≤ Σn
k=1|αk(x)| ‖xk‖ ≤ β‖x‖∗,

where β = maxk=1,2,...,n ‖xk‖ > 0. Hence we have proven that

‖x‖ ≤ β‖x‖∗ for all x ∈ E.

It remains to prove that there exists an α > 0 such that

α‖x‖∗ ≤ ‖x‖ for all x ∈ E. (1)

Let us argue by contradiction. Assume that (1) is false. Then there exists a sequence
(ym)∞m=1 such that

1

m
‖ym‖∗ > ‖ym‖ for k = 1, 2, . . .

WLOG we can assume ‖ym‖∗ = 1 for all m (note that in general αk(λx) = λαk(x) for
scalars λ, x ∈ E and k = 1, 2, . . . , n. Hence ym can be replaced by λym for proper choice
of λ). Now set

am = (α
(m)
1 , α

(m)
2 , . . . , α(m)

n ), m = 1, 2, 3, . . . ,
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where
αk(ym) = α

(m)
k , k = 1, 2, . . . , n, m = 1, 2, 3, . . .

Since |α(m)
1 | ≤ 1, m = 1, 2, 3, . . . we conclude from Bolzano-Weierstrass theorem that

there exists a converging subsequence, denoted (α
(m)
1,1 )∞m=1, of (α

(m)
1 )∞m=1. Call the limit

element ᾱ1. Now consider the sequence formed by the second coordinate in

am,1 = (α
(m)
1,1 , α

(m)
2,1 , . . . , α

(m)
n,1 ), m = 1, 2, 3, . . . ,

i.e. (α
(m)
2,1 )∞m=1. Since |α

(m)
2,1 | ≤ 1, m = 1, 2, 3, . . . we conclude from Bolzano-Weierstrass

theorem that there exists a converging subsequence, denoted (α
(m)
2,2 )∞m=1, of (α

(m)
2,1 )∞m=1.

Call the limit element ᾱ2. We proceed inductively. After n steps we have a sequence

am,n = (α
(m)
1,n , α

(m)
2,n , . . . , α

(m)
n,n ), m = 1, 2, 3, . . . ,

where we have that
α

(m)
l,n → ᾱl, m→∞

for l = 1, 2, . . . , n. Set

zm = α
(m)
1,n x1 + α

(m)
2,n x2 + . . .+ α(m)

n,n xn, m = 1, 2, 3, . . .

We have that each zm is equal to a yl for some l ≥ m and hence

‖zm‖ → 0 as m→∞.

Moreover set z̄ = ᾱ1x1 + ᾱ2x2 + . . .+ ᾱnxn. We have

‖z̄‖ ≤ ‖z̄ − zm‖+ ‖zm‖ =

= ‖(ᾱ1 − α(m)
1,n )x1 + (ᾱ2 − α(m)

2,n )x2 + . . .+ (ᾱn − α(m)
n,n )xn‖+ ‖zm‖ ≤

≤ |ᾱ1 − α(m)
1,n | ‖x1‖+ |ᾱ2 − α(m)

2,n | ‖x2‖+ . . .+ |ᾱn − α(m)
n,n | ‖xn‖+ ‖zm‖ → 0

as m→∞. Hence ‖z̄‖ = 0 and

0 = ᾱ1x1 + ᾱ2x2 + . . .+ ᾱnxn with |ᾱ1|+ |ᾱ2|+ . . .+ |ᾱn| = 1.

This contradicts the assumption that x1, x2, . . . , xn is a basis for E since there must be
an ᾱk that is non-zero. We conclude that (1) above must hold. The theorem is proven.

�

We see in the proof that one difficulty is to find a suitable notation for subsequences of
subsequences of ... of sequences. In general, if we have a sequence an, n = 1, 2, 3, . . .,
a subsequence can be denoted by ank , k = 1, 2, 3, . . . Here nk, k = 1, 2, 3, . . . is an
increasing sequence of positive integers. This mean that every element in the lat-
ter sequence appears in the first one and in the same order as there. If we want to
denote a subsequence of ank , k = 1, 2, 3, . . . we could write ankl , l = 1, 2, 3, . . . but
that is not very efficient, in particular if we want to continue to extract subsequences.
We can write an,1, n = 1, 2, 3, . . . instead of ank , k = 1, 2, 3, . . . and correspondingly
an,2, n = 1, 2, 3, . . . for ankl , l = 1, 2, 3, . . . and so on. The second subindex indicates
which generation of taking subsequences we are considering.
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Week 2 Definition and discussion of the topological concepts: open set/closed set and closure
of a set, bounded/dense/compact sets. The theorem stating that all closed bounded sets
in a normed space are compact is a characterisation of finite-dimensionality for normed
spaces was stated and proved. Convergent sequences and Cauchy sequences were treated
and Banach spaces were introduced. Example of Banach spaces and non-Banach spaces
where given. It was proved in detail that C([0, 1]) with max-norm and lp, 1 ≤ p < ∞
with the standard lp-norm were Banach spaces. Also converging series and absolutely
converging series in normed spaces were treated. Mappings between normed spaces –
continuity, linearity, bounded linear mappings and how these properties for mappings
are related was discussed. We introduced operator-norm for bounded linear mappings
and showed that this was a norm for the vector space of all bounded linear mappings
between two normed spaces E1, E2 which we denote B(E1, E2). We also proved that this
normed space was a Banach space given that the target space E2 was a Banach space.
Examples/exercises on bounded linear mappings were discussed.

Finally we stated and proved the Banach-Steinhaus theorem (uniform boundedness prin-
ciple). Since the proof differs from the one in DM we supply the proof presented at the
lecture.

Theorem 0.2. Assume that (E1, ‖ · ‖1) is a Banach space and that (E2, ‖ · ‖2) is a
normed space. Moreover assume that

sup
T∈F
‖T (x)‖2 <∞ for all x ∈ E1.

Then
sup
T∈F
‖T‖ <∞.

Proof: The proof is done in two steps.
Step 1 : We prove the theorem under the assumption

∃x0 ∈ E1 ∃r > 0 ∃M > 0 ∀x ∈ B(x0, r) ∀T ∈ F : ‖T (x)‖2 ≤M. (2)

Fix an arbitrary T ∈ F . For x ∈ E1 with ‖x‖1 ≤ r we have

‖T (x)‖2 = ‖T (x0 + x− x0)‖2 = ‖T (x0 + x)− T (x0)‖2 ≤

≤ ‖T (x0 + x)‖2 + ‖T (x0)‖2 ≤ 2M

where we used the linearity of T . Hence for x 6= 0 it follows that

2M ≥ ‖T (
r

‖x‖1
x)‖2 =

r

‖x‖1
‖T (x)‖2

where the linearity of T is used. Thus

‖T (x)‖2 ≤
2M

r
‖x‖1 all x ∈ E1.

We conclude that
sup
T∈F
‖T‖ <∞.
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Step 2 : Remains to prove that assumption (2) is true. We argue by contradiction. So
assume that the negation of the statement (2) is true. Hence

∀x0 ∈ E1 ∀r > 0 ∀M > 0 ∃x ∈ B(x0, r) ∃T ∈ F : ‖T (x)‖2 > M.

This statement is equivalent to

∀x0 ∈ E1 ∀r > 0 ∀M > 0 ∃x ∈ B(x0, r) ∃T ∈ F : ‖T (x)‖2 > M (3)

since
B(x0, r1) ⊂ B(x0, r2) ⊂ B(x0, r2) ⊂ B(x0, r3) for all r1 < r2 < r3.

The idea is to find a Cauchy sequence (xn)∞n=1 in E1 (which converges since E1 is a
Banach space) and a sequence (Tn)∞n=1 in F such that Tn(xn) > n for n = 1, 2, 3, . . . and
also Tn(x) > n for the limit element x. This yields a contradiction to the hypothesis of
the theorem.

From (3) it follows that there exists a x1 ∈ B(0, 1) and T1 ∈ F such that ‖T1(x1)‖2 > 1.
Since T1 is bounded linear and hence continuous there exists 0 < r1 < 1

2 such that
‖T1(x)‖2 > 1 for all x ∈ B(x1, r1) and B(x1, r1) ⊂ B(0, 1).

In the same way it follows from (3) that there exists a x2 ∈ B(x1, r1) and T2 ∈ F such
that ‖T2(x2)‖2 > 2. Moreover since T2 is bounded linear it follows that there exists
0 < r2 < (1

2)2 such that ‖T2(x)‖2 > 2 for all x ∈ B(x2, r2) and B(x2, r2) ⊂ B(x1, r1).
Proceed inductively. We obtain a sequence (xn)∞n=1 in E1 and a sequence (Tn)∞n=1 in F
and (rn)∞n=1 in (0,∞) such that for n = 1, 2, 3, . . .

• ‖Tnx‖2 > n for all x ∈ B(xn, rn)

• B(xn, rn) ⊂ B(xn−1, rn−1)

• 0 < rn < (1
2)n

We conclude that (xn)∞n=1 is a Cauchy sequence in E1 since for n > m

‖xn − xm‖1 < rm < (
1

2
)m → 0 as n,m→∞.

Since (E1, ‖ · ‖1) is a Banach space the sequence (xn)∞n=1 converges. Call the limit x.
Here x ∈ B(xn, rn) ⊂ B(xn−1, rn−1) for all n and hence

‖Tn−1(x)‖2 > n− 1 n = 2, 3, . . .

and so
sup
T∈F
‖T (x)‖2 ≥ sup

n=1,2,3,...
‖Tn(x)‖2 =∞.

This is a contradiction to the hypothesis and the assumption (3) is false. The theorem
is proved. �

The Banach-Steinhaus theorem will be used later several times in the course. Here we
just give a corollary to the theorem.
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Corollary 0.1. Let E1 be a Banach space and E2 a normed space. Moreover let (Tn)∞n=1

be a sequence in B(E1, E2) such that

T (x) ≡ lim
n→∞

Tn(x) exists for all x ∈ E1.

Then
T ∈ B(E1, E2).

To sketch the proof, note that T inherits the property of being linear from that for all
Tn. Since (Tn(x))∞n=1 converges in E2 for all x ∈ E1 it is a bounded sequence for all
x and hence by the Banach-Steinhaus theorem supn ‖Tn‖ < ∞. This implies that T is
bounded liner mapping since for x ∈ E1

‖T (x)‖ = ‖ lim
n→∞

Tn(x)‖ = lim
n→∞

‖Tn(x)‖ ≤ sup
n
‖Tn‖ ‖x‖.

Week 3 Exercise K 6.4:11 was taken as an introduction to the Banach’s fixed point theorem,
theorems 2.1 and 2.2 were stated and proved, exercises K 6.4:3,9 were solved, example
on page 21 was discussed. Solutions to some exercises for week 1 and 2 were sketched. A
proof of Picard’s existence theorem for solutions to initial value problems is given here.
It resembles the proof of the statement in the example on page 21.

Theorem 0.3. Let ‖ · ‖ be any norm on Rn and let T > 0. Assume that

g ∈ C([0, T ]× Rn; Rn)

and that there exists a γ > 0 such that

‖g(t, v)− g(t,w)‖ ≤ γ‖v− w‖ for all t ∈ [0, T ] and v,w ∈ Rn.

Let u0 ∈ Rn. Then the initial value problem{
u′(t) = g(t, u(t)), t ∈ [0, T ]
u(0) = u0

(4)

has a unique solution u ∈ C([0, T ]; Rn).

We note that (4) is a system of 1:st order differential equations, that the interval [0, T ]
can be replaced by any interval [t0, T̃ ] for any t0 < T̃ and that1

u′(t) = [u′1(t) u′2(t) . . . u′n(t)]T .

A general n-order differential equation

u(n)(t) = f(t, u(t), . . . , u(n−1))(t)

can be written as a system of 1:st order differential equations by setting
u1(t) = u(t)
u2(t) = u′(t)
. . .

un(t) = u(n−1)(t)

1T in the expression below stands for taking the transpose of the matrix.
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With
u(t) = [u1(t) u2(t) . . . un(t)]T

the equation takes the form

u′(t) = Au(t) + [0 0 . . . f(t, u(t))]T ,

where

A =


0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1
0 0 0 . . . 0

 .

Proof: (somewhat sketchy) The proof is done in three steps.

Step 1 : We observe that if u ∈ C([0, T ]; Rn) solves

u(t) = u0 +

∫ t

0
g(s, u(s)) ds, t ∈ [0, T ]

then u ∈ C1([0, T ]; Rn) and is a solution to the IVP (4), and conversely.

Step 2 : We observe that C([0, T ]; Rn) is a Banach space with the norm

||| · ||| : C([0, T ]; Rn) 3 v 7→ sup
t∈[0,T ]

e−γt‖v(t)‖.

The mapping
F : C([0, T ]; Rn)→ C([0, T ]; Rn)

defined by

F(v)(t) = u0 +

∫ t

0
g(s, v(s)) ds, t ∈ [0, T ]

is a contraction with respect to the norm ||| · ||| since

(F(v)− F(w))(t) =

∫ t

0
eγs · e−γs · (g(s, v(s))− g(s,w(s)) ds

and hence

‖(F(v)−F(w))(t)‖ ≤ (∗) ≤
∫ t

0
eγs ds· sup

s∈[0,T ]
e−γs‖g(s, v(s)− g(s,w(s))‖︸ ︷︷ ︸

≤γ|||v−w|||

≤ eγt(1−e−γT )|||v−w|||.

Here we have used a generalization of the triangle inequality for norms at (∗) when
moving the norm inside the integral. Banach’s fixed point theorem implies that there
exists a unique u ∈ C([0, T ]; Rn) such that

u(t) = F(u)(t) = u0 +

∫ t

0
g(s, u(s)) ds, t ∈ [0, T ].

Step 3 : From Step 1 the conclusion of the theorem follows. �
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Week 4 Introduced inner product spaces with examples (l2, 〈·, ·〉l2) and (C([0, 1]), 〈·, ·〉L2).
Stated and proved Cauchy-Schwarz inequality and that the induced norm ‖x‖ =

√
〈x, x〉

is a norm that satisfies the parallelogram law. Used this to give examples of non-inner
product spaces. Introduced the polarization identity and gave consequences. Defined
orthogonality and ON-sequence. Stated and proved the Pythagorean theorem, Bessel’s
equality and inequality. Defined the notion of Hilbert space. Defined strong and weak
convergence and relations for these notions. Stated and proved that a weakly converging
sequence in a Hilbert space is bounded. Definition of orthogonal complement. Stated
and showed that for any subset A in a Hilbert space A⊥ is a closed subspace and that
A⊥⊥ = SpanA.

An application of Schaauder’s fixed point theorem was treated. The notion of completion
of a normed space was discussed in general and in the context of Lp-spaces. Basic
properties of Lp-functions were stated.

Week 5 Riesz representation theorem was stated, proved and discussed. Gram-Schmidt or-
thogonalization procedure was given. It was shown that for an ON-sequence (xn)∞n=1 in
a Hilbert space E,

Σ∞n=1αnxn ∈ E iff (αn)∞n=1 ∈ l2.

Definition of ON-basis. Proved that if (xn)∞n=1 is an ON-sequence in a Hilbert space
(E, 〈·, ·〉) then the following statements are equivalent:

• (xn)∞n=1 is a complete ON-sequence

• Span{xn : n = 1, 2, 3, . . .} is dense in E

• Parseval’s formula

• For every x, y ∈ E
〈x, y〉 = Σ∞n=1〈x, xn〉〈y, xn〉

• 〈x, xn〉 = 0 for all n implies x = 0

Defined the concept of separable Hilbert space and showed that such a space has a
countable dense subset. Trigonometric Fourier series were mentioned.

Linear bounded operators on a Banach (e.g. Hilbert) space were defined. The standard
example with an integral operator on L2([0, 1]) with continuous kernel function k was
discussed. It was shown that the operator norm for the integral operator is bounded
above by the L2-norm of the function k. Composition of bounded linear operators A,B
was defined and it was proved that

‖AB‖ ≤ ‖A‖ ‖B‖

It was proven that there can be no bounded linear operators A,B on any normed space
satisfying AB −BA = I, where I(x) = x for all x.

Lax-Milgram’s theorem was stated and proved.

The concept of adjoint operator to a bounded linear operator in a Hilbert space was dis-
cussed including elementary properties. The adjoint operator for our standard example
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was calculated. The notion of self-adjoint operator was introduced and it was stated
and proved that for a self-adjoint operator A the operator norm is (also) given by

‖A‖ = sup
‖x‖=1

|〈A(x), x〉|

Proved that for A ∈ B(E,E) for Hilbert space E

1. R(A)⊥ = N (A∗)

2. R(A) = N (A∗)⊥

Week 6 Definition of compact (linear) operators on Banach/Hilbert spaces and basic prop-
erties for these, stated and proved that the compact linear operators on a Banach space
form a closed subspace in the vector space of bounded linear operators on the Banach
space with the operator norm. We showed that compact operators improves conver-
gence in the Hilbert space setting (a weakly converging sequence is mapped by the
compact operator to a strongly converging sequence). Moreover we showed that finite-
rank operators are compact and that every compact operator in a Hilbert space can be
approximated by finite-rank operators (not true for Banach spaces!). We also discussed
that our "standard integral operator on L2([0, 1]) with continuous kernel function" is
compact. Fredholm Alternative was stated, also in the case of compact operators on
a Banach space, and proved for compact operators on a Hilbert space. The notions of
eigenvalue/eigenfunction was introduced and basic properties for these were discussed.
It was stated and proved that a compact self-adjoint operator A has an eigenvalue λ
with |λ| = ‖A‖. Hilbert-Schmidt theorem/spectral theorem for compact self-adjoint op-
erators was stated and proved. The spectrum for an bounded liner operator was defined
and basic properties were discussed, e.g. the Neumann-series lemma. Properties for the
spectrum for a compact opertor on a Banach/Hilbert space was discussed.

Week 7 Boundary value problems for ordinary differential equations were discussed. Method
for calculating the Green’s function was given. Application of Hilbert-Schmidt theorem
to symmetric linear differential operators on intervals and with "sound" boundary con-
ditions were given. The method of continuity (in spectral theory) was stated and proved.
Orthogonal projection operators on Hilbert spaces were discussed. Finally an classical
exercise involving ON-basis’ was solved.
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1 Introduction

Functional analysis is one of the major fields of mathematics. It traces its history back to
the nineteen century. From this period we find mathematicians like Fredholm (a swede) and
Volterra. Many breakthroughs were made during the first part of the twentieth century.
Names associated with these important years are Hilbert and Banach. We will indeed meet
these names later! These notes will only serve as a complement to the textbook by Debnath and
Mikusinski with the title An Introduction to Hilbert Spaces with Applications. The additional
material has been added to the course previously and for the benefit of the students written
down in the notes.

As a motivating example we discuss a problem coming from differential equations. Looking
at the problem in hinsight we can easily identify many of the different notions that appear in
course and also get a feeling for them as being "natural". So let us roll up are sleeves and
start with the calculations.

Consider the differential equation

f ′′(x) + f(x) = g(x) (5)

in the interval 0 ≤ x ≤ 1 with the solution satisfying the boundary conditions

f(0) = 1, f ′(0) = 0.

The problem itself is of no special interest and will only serve as a testing ground for our ideas.
Here we first think of g(x) as a given continuous function on the interval x ∈ [0, 1]. If g = 0
we know from our first calculus class that

f(x) = A cosx+B sinx

is a solution to the differential equation, where A,B are arbitrary constants. To treat the case
with an arbitrary function g(x) we apply the method of variations of constants. If you are not
familiar with the method it does not matter since this is the only time when we will use it.
Set

f(x) = A(x) cosx+B(x) sinx (6)

and differentiate. We get

f ′(x) = A′(x) cosx+B′(x) sinx−A(x) sinx+B(x) cosx.

Assume (and this is part of the method) that

A′(x) cosx+B′(x) sinx = 0, x ∈ [0, 1].

Differentiate once more. This gives

f ′′(x) = −A(x) cosx−B(x) sinx−A′(x) sinx+B′(x) cosx.

Hence (6) satisfies (5) if

−A′(x) sinx+B′(x) cosx = g(x), x ∈ [0, 1].
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We now solve 
A′(x) cosx+B′(x) sinx = 0

−A′(x) sinx+B′(x) cosx = g(x)

This together with the boundary conditions gives us that

A′(x) = −g(x) sinx

B′(x) = g(x) cosx

A(0) = 1 (= f(0))

B(0) = 0 (= f ′(0))

We conclude that 
A(x) = A(0) +

∫ x
0 A

′(t) dt = 1 +
∫ x

0 (−g(t) sin t) dt

B(x) = B(0) +
∫ x

0 B
′(t) dt =

∫ x
0 g(t) cos t dt

which finally implies that

f(x) = cosx+

∫ x

0
sin(x− t)g(t) dt. (7)

You can easily check that this function f(x) satisfies the differential equation and the imposed
boundary conditions. (7) is a reformulation of the differential equation with the boundary
conditions.

To push things further consider the case with g(x) = k(x)f(x), x ∈ [0, 1]. Here k is assumed
to be a known continuous function on [0, 1]. The solution formula above implies

f(x) = cosx+

∫ x

0
sin(x− t)k(t)f(t) dt. (8)

Note that the function f appears on both sides. Here comes a main idea.

Pick any f0(x) ∈ C([0, 1]). C([0, 1]) denotes the set of all continuous functions on [0, 1]. Set
f1(x) = cosx+

∫ x
0 sin(x− t)k(t)f0(t) dt

f2(x) = cosx+
∫ x

0 sin(x− t)k(t)f1(t) dt

. . .

i.e.
fn(x) = cosx+

∫ x

0
sin(x− t)k(t)fn−1(t) dt n = 1, 2, 3, . . .

To simplify notations set u(x) = cosx and

Kv(x) =

∫ x

0
sin(x− t)k(t)v(t) dt, v ∈ C([0, 1]), x ∈ [0, 1].
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Then equation (8) takes the form
f = u+Kf.

Now consider the sequence (fn)∞n=0 where

fn = u+Kfn−1, n = 1, 2, 3, . . .

Dream: fn "tends to" a continuous function f and Kfn "tends to" Kf as n → ∞. Here we
have to make "tends to", which we denote by →, precise. The dream is illustrated by the
diagram

fn = u + Kfn

↓ ↓

f = u + Kf

(9)

The limit function f will be a solution to our problem.

To proceed we recall some basic facts from first year calculus courses.

Definition 1.1. We say that a sequence (vn)∞n=1 of continuous functions on I = [0, 1] con-
verges uniformly on I if

max
x∈I
|vn(x)− vm(x)| → 0, as n,m→∞ (10)

i.e. if for all ε > 0 there exists N such that

max
x∈I
|vn(x)− vm(x)| < ε, for all n,m ≥ N. (11)

Lemma 1.1. Suppose that (vn)∞n=1 converges uniformly on I. Then there exists a continuous
function v on I such that

max
x∈I
|vn(x)− v(x)| → 0, as n,m→∞.

Moreover we set ‖h‖ = maxx∈I |h(x)| for every h ∈ C(I). Then (10) and (11) can be written
as

‖vn − vm‖ → 0, as n,m→∞

and
‖v − vn‖ → 0, as n→∞

Back to our problem above: The question is now whether

‖fn − fm‖ → 0, as n,m→∞

or not? Does this depend on the choice of f0?

To settle that question note that with notations from above

K(v + w) = Kv +Kw for all v, w ∈ C(I),

14



where v + w is the (continuous!) function that is defined by (v + w)(x) = v(x) + w(x) for
x ∈ I (and also K(v + w) continuous). Moreover we set

Knv = K(Kn−1v), for all v ∈ C(I) and n = 2, 3, 4, . . .

We now have
f1 = u+Kf0

f2 = u+Kf1 = u+K(u+Kf0) = u+Ku+K2f0

. . .

fn = u+Ku+K2u+ . . .+Kn−1u+Knf0

Assume n > m. We obtain

fn − fm = Kmu+ . . .+Kn−1u+Knf0 −Kmf0.

From the triangle inequality for real numbers we get

‖v + w‖ ≤ ‖v‖+ ‖w‖

We also have ‖ − v‖ = ‖v‖. This gives

‖fn−fm‖ ≤ ‖Kmu‖+. . .+‖Kn−1u‖+‖Knf0‖+‖−Kmf0‖ = Σn−1
l=m‖K

lu‖+‖Knf0‖+‖Kmf0‖.

If
Σ∞l=1‖K lv‖ <∞ for every v ∈ C(I), (12)

then
‖fn − fm‖ → 0, as n,m→∞.

Asssume that (12) holds for the moment. Then we can conclude that

• there exists a f ∈ C(I) such that ‖fn − f‖ → 0 as n→∞ (which we write fn → f)

• ‖Kfn −Kf‖ → 0 as n→∞ since:

For x ∈ [0, 1]

|Kfn(x)−Kf(x)| = |
∫ x

0 sin(x− t)k(t)(fn(t)− f(t)) dt| ≤

≤
∫ x

0 | sin(t− x)| · |k(t)| · |(fn − f)(t)| dt ≤ ‖k‖ ‖fn − f‖x

so
‖Kfn −Kf‖ ≤ ‖k‖ ‖fn − f‖ → 0 as n→∞.

We have found yet another property of K namely

‖Kv‖ ≤M‖v‖ for all v ∈ C(I)

(with M = ‖k‖)
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• The diagram (9) is proven to hold!

We can conclude, provided (12) holds, that the problem
f ′′ + f = kf, x ∈ I

f(0) = 1, f ′(0) = 0
(13)

reformulated as the integral equation f(x) = cosx+
∫ x

0 sin(x− t)k(t)f(t) dt has a solution.

It remains to show that (12) holds. Fix a v ∈ C(I). For x ∈ I we get

|Kv(x)| = |
∫ x

0 sin(x− t)k(t)v(t) dt| ≤
∫ x

0 ‖k‖ ‖v‖ dt = ‖k‖ ‖v‖x

|K2v(x)| = |
∫ x

0 sin(x− t)k(t)Kv(t) dt| ≤
∫ x

0 ‖k‖|Kv(t)| dt ≤

≤
∫ x

0 ‖k‖
2‖v‖t dt = ‖k‖2‖v‖ · x2

2

By induction we get

|Knv(x)| ≤ ‖k‖n‖v‖ · x
n

n!
n = 1, 2, 3, . . .

and hence

Σ∞l=1‖K lv‖ ≤ Σ∞l=1

‖k‖l ‖v‖
l!

≤ e‖k‖ · ‖v‖ <∞.

Claim: f = u+Kf has a unique continuous solution f

Assume that there are two solutions f, f̃ . Set v = f − f̃ . Then it holds that

v = Kf −Kf̃ = K(f − f̃) = Kv

and so
v = Kv = K2v = . . . = K lv l = 1, 2, 3, . . .

But then
Σ∞l=1‖K lv‖ <∞

implies that ‖v‖ = 0, i.e. v(x) = 0, x ∈ I. Hence f = f̃ and the solution is unique.

Reconsidering the calculations above we have more ore less proved the following result with
our bare hands.

Theorem 1.1. Consider the integral equation

f(x) = u(x) +

∫ x

0
k(x, t)f(t) dt, x ∈ [0, 1] = I, (14)

where u ∈ C(I) and k ∈ C(I × I). Then there exists a unique f ∈ C(I) satisfying (14).

With the same technology we can prove
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Theorem 1.2. Consider the integral equation

f(x) = u(x) +

∫ 1

0
k(x, t)f(t) dt, x ∈ [0, 1] = I, (15)

where u ∈ C(I) and k ∈ C(I × I) and with

max
(x,t)∈I×I

|k(x, t)| < 1.

Then there exists a unique f ∈ C(I) satisfying (15).

The integral equation in the first theorem is called a Volterra integral equation and the one in
the second theorem is called a Fredholm integral equation. We will come back to these integral
equations later in the course.

It was indicated in the beginning that this introductory example would serve as a test bench
for different notions that will appear in the course. A quick odyssey through these notions
involves

vector space: C([0, 1]) with the operations addition and multiplication by scalars, defined
by {

(u+ v)(x) = u(x) + v(x), x ∈ [0, 1]
(λu)(x) = λu(x), x ∈ [0, 1]

for u, v ∈ C([0, 1]) and scalars λ, defines a vector space. Note that u + v and λu are
continuous functions.

norm on a vector space: ‖u‖ = maxx∈I |u(x)| defines a norm on the vector space C([0, 1]).
The norm gives a way to measure distance between the elements in the vector space.
It also has properties (triangle inequality and scaling) related to the two operations
(addition and multiplication by scalars) on the vector space. However a vector space
can be equipped with many different norms. Once we have a norm we can talk about
the notions of convergence and continuity (with respect to the particular norm). When
we talk about real-valued continuous functions on the interval [0, 1] we consider R as a
vector space (with the obvious definitions of addition and multiplication by scalars) and
with the norm given by the absolute value | · | for real numbers.

Cauchy sequence on a normed space: (fn)∞n=1 defined in the example above is a Cauchy
sequence in the vector space C([0, 1]) with the max-norm. In general, a Cauchy sequence
in a normed vector space is a sequence (un)∞n=1 such that

‖un − um‖ → 0 as n,m→∞.

Banach space: C([0, 1]) with the max-norm is a Banach space since for every Cauchy se-
quence (un)∞n=1 in C([0, 1]) there exists a u ∈ C([0, 1]) such that ‖un → u‖ → 0 as
n → ∞, in other words "every Cauchy sequence converges". This is the defining prop-
erty for Banach spaces. We observe that the real numbers with the norm given by the
absolute value is a Banach space!
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linear mappings between vector spaces: K is a linear mapping from C([0, 1]) into itself
since {

K(u+ v) = Ku+Kv
K(λu) = λKu

hold for all u, v ∈ C([0, 1]) and scalars λ.

bounded linear mappings: K is a bounded linear mapping if there exists a constant M
such that

‖Ku‖ ≤M‖u‖, for all u ∈ C([0, 1]).

operator norm:

‖K‖ = inf{M > 0 : ‖Ku‖ ≤M‖u‖, for all u ∈ C([0, 1])}

The bounded linear mappings between normed spaces form in a natural way a vector
space in itself and the operator norm is a norm on this vector space. Note here that the
norm signs ‖K‖ and ‖Ku‖ have different meanings, they are norms on different vetor
spaces. When there is any risk of misinterpretation we will use different norm-signs.

fixed point theorems: To find or prove the existence of a solution to the problem f = T (f),
where T is a mapping (not necessarily linear as in our example) from a (closed) set F
in a Banach space E into itself (i.e. F ), we can sometimes proceed as follows: Pick a
f0 ∈ F and then form the sequence of iterates fn+1 = T (fn), n = 1, 2, 3, . . . This gives
a solution f as the limit element of (fn)∞n=0 if T satisfies

‖T (g)− T (h)‖ ≤ c‖g − h‖ all g, h ∈ F

for some constant 0 < c < 1. This is called Banach’s fixed point theorem and will be
used frequently.

Green’s function: In our problem we have the linear differential operator

L = (
d

dx
)2 + 1,

acting on twice continuously differentiable functions on I = [0, 1], and with the homo-
geneous boundary conditions

f(0) = f ′(1) = 0.

(The reason for the function u(x) = cosx that appears in the solution formula is to
compensate for the inhomogeneity in the boundary conditions) We have that the solution
to the problem {

Lf = h, on I
f(0) = f ′(1) = 0

can be written as

f(x) =

∫ 1

0
g(x, t)h(t) dt, x ∈ I.

Here the Green’s function g is given by g(x, t) = sin(x− t)χ(x, t) where

χ(x, t) =

{
1 x > t
0 x < t

18



2 Fixed point theory

2.1 Introduction

This section contains topics from nonlinear functional analysis. By this we mean that the
mappings that appear are not assumed to be linear unless explicitly stated to be so.

Generally the problem is to solve equations of the form

T (u) = v,

where T : X → Y is a mapping between Banach spaces X and Y . Here v ∈ Y is given and
we look for solutions in X or some subset of X. For linear mappings T we can often find a
formula for the inverse operator. The solution has to be uniquely defined in this case. To
exemplify consider the boundary value problems{

u(n) + an−1u
(n−1) + . . .+ a1u

′ + a0u = v, in I
homogeneous boundary values on ∂I

The solutions are obtained as convolutions of the Green’s function for the problem with the
right hand side v of the differential equation.

However if T is a nonlinear mapping then in general we can not find a formula representing the
solution/solutions. This is also the case when X = Y . We can no longer prove the existence of
a solution just by explicitly writing down the inverse operator, but we have rely on mapping
properties of T to prove the existence of a solution. It might be the case that there are several
solutions.

In connection with integral equations for instance we have X = Y and the mapping T takes
often the form

T (u) = u+G(u),

i.e. T is a perturbation of the identity mapping. The problem can be formulated as

u = H(u),

where H(u) = v−G(u). We suppress the variable v and consider H as a function of u with v
as a parameter. The problem to find a solution is then equivalent to find a fixed point of H,
i.e. an element u0 ∈ X such that

u0 = H(u0).

We recall that if G is linear and small in the sense that the operator norm of G is less than
1 then the mapping T−1 is a welldefined bounded linear mapping and can be obtained as a
Neumann series, see Section 4.

The fixed point results that will be discussed here are of two types. The first type deals
with contractions and are referred to as metric fixed point theorems. One example of such a
theorem is the Banach’s fixed point theorem. The second type deals with compact mappings.
Those are called topological fixed point theorems and are more involved. Names associated
with such results are Brouwer and Schauder.
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First let us consider a well-known example. Assume that

f : [0, 1]→ [0, 1]

is a continuous function. Then there exists a x0 ∈ [0, 1] such that f(x0) = x0. This is a
consequence of the theorem saying that every real-valued continuous function attains every
intermediary value between any two given values and is based on the fact that

1. [0, 1] is a connected closed (i.e. a compact2 and convex) subset in a Banach space, here
R, and that

2. f is a continuous function.

To prove the existence of a fixed point for f we usually define the function g(x) = x − f(x)
on the interval [0, 1] and observe that g is a continuous function satisfying g(0) ≤ 0 ≤ g(1).
We can then conclude that there is a x0 ∈ [0, 1] such that g(x0) = 0. This example can be
considered as the 1-dimensional version of Brouwer fixed point theorem. One feature here is
that the method is not constructive, i.e. the position of the fixed point is not given by the
method. Nor does the method yield that the fixed point is unique, which indeed is sound since
there can be any number of fixed points for f . To get some information on the position of
one fixed point we can use the strategy of repeatedly bisecting intervals into pieces as follows:
Assume that g(0) < 0 < g(1), since otherwise we already have one fixed point, and consider
the subintervals [0, 1

2 ] and [1
2 , 1]. If g(1

2) = 0 we have one fixed point namely x0 = 1
2 . If

g(1
2) > 0 or g(1

2) < 0 we can apply the procedure to the the restriction of the function g to
the subintervals [0, 1

2 ] and [1
2 , 1] respectively. In this way we either find a fixed point as an

end point of an interval or we find an infinite set of nested shrinking intervals that all contains
a fixed point. For the later case we can for any ε > 0 find an interval of length less than ε
that contains a fixed point. We also note that this argument proves the intermediary value
theorem provided we have that R is a complete normed space, i.e. a Banach space. Compare
the argument above with the proof of Baire’s theorem.

2.2 Banach’s fixed point theorem

First we look at the problem to find a fixed point for a real-valued continuous function f :
R → R in the spirit of Banach’s fixed point theorem. We then need f to be a contraction
meaning that there exists a positive real number c less than 1 such that for any pair x, y of
points the distance between the images under f of these points is smaller by a factor c than
the distance between the points x and y. In formulas this means

|f(x)− f(y)| ≤ c|x− y|

for arbitrary x, y ∈ R. The conclusion from Banach fixed point theorem is that there is a
unique fixed point for f . This can be found as follows: With notation from Banach’s fixed
point theorem fix any element z ∈ R and then form the sequence (Tn(z))∞n=1. Tn denotes the

2cf. g : (0, 1)→ (0, 1) with g(x) = x
2
.
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operator obtained by composing T with itself n times, i.e. Tn = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n elements

. The sequence

is converging geometrically with the fixed point as the limit point.

We first state and prove some general observations.

Lemma 2.1. Let T be a continuous mapping on a Banach space X. Then the following
statements hold true:

1. If there exist x, y ∈ X such that

lim
n→∞

Tn(x) = y

then y is a fixed point for T , i.e. T (y) = y.

2. If T (X) is a compact set in X and for each ε > 0 there exists a xε ∈ X such that

‖T (xε)− xε‖ < ε

then T has a fixed point.

Proof. Set yn = Tn(x), n = 1, 2, . . .. If T is a continuous mapping then

T (y) = T ( lim
n→∞

yn) = lim
n→∞

T (yn) = lim
n→∞

yn+1 = y,

which proves the first statement.

Assume that the assumptions of 2) are satisfied. Then for n = 1, 2, . . . there are xn ∈ X such
that

‖T (xn)− xn‖ <
1

n
. (16)

T (X) is a compact set which implies that there exits a convergent subsequence (T (xnk))∞k=1

of (T (xn))∞n=1. Call the limit point x. Then x is a fixed point for T since also the sequence
(xnk)∞k=1 converges to x according to (16) and T is continuous.

We now formulate one of the main theorems.

Theorem 2.1 (Banach’s fixed point theorem). Let T be a contraction on a Banach space X.
Then T has a unique fixed point.

Proof. Fix an arbitrary element z ∈ X and consider the sequence

(Tn(z))∞n=1.
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Set zn = Tn(z) for n = 1, 2, . . .. We note that

‖zn − zm‖ ≤ ‖zn − zn−1‖+ . . .+ ‖zm+1 − zm‖ =

= ‖T (zn−1)− T (zn−2)‖+ . . .+ ‖T (zm)− T (zm−1)‖ ≤

≤ c‖zn−1 − zn−2‖+ . . .+ c‖zm − zm−1‖ ≤ . . . ≤

≤ (cn−1 + cn−2 + . . . cm)‖z1 − z‖ ≤
cm

1− c
‖z1 − z‖,

where we (without loss of generality) have assumed n > m ≥ 1. This yields
‖zn − zm‖ → 0 as n,m → ∞ and hence (zn)∞n=1 is a Cauchy sequence. Since X is a Banach
space the sequence converges, i.e. there is a x0 ∈ X such that zn → x0 as n→∞. x0 will be
a fixed point for T since

‖T (x0)− x0‖ ≤ ‖T (x0)− T (zn)‖+ ‖zn+1 − x0‖ ≤ c‖x0 − zn‖+ ‖zn+1 − x0‖

where the LHS is independent of n and the RHS tends to 0 as n→∞. The uniqueness follows
from the contraction property for T . If x0 6= y0 both are fixed points of T then we get

‖x0 − y0‖ = ‖T (x0)− T (y0)‖ ≤ c‖x0 − y0‖ < ‖x0 − y0‖

which results in a contradiction.

From the proof we see that

1. the sequence (Tn(z))∞n=1 converges to the unique fixed point independently of the
choice of z.

2. for an arbitrary element x ∈ X we have

‖x− x0‖ ≤
1

1− c
‖x− T (x)‖,

where x0 denotes the fixed point of T , since

‖x− x0‖ ≤ ‖x− T (x)‖+ ‖T (x)− T (x0)‖ ≤ ‖x− T (x)‖+ c‖x− x0‖.

Banach’s fixed point theorem can be generalized in the following way.

Theorem 2.2. Let T be a mapping on a Banach space X such that TN is a contraction on
X for some positive integer N . Then T has a unique fixed point.

It is not necessary to assume that T is continuous.
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Proof. Banach’s fixed point theorem implies that there exists a unique fixed point for TN .
Call this element x0. Now just note that

‖T (x0)− x0‖ = ‖TN (T (x0))− TN (x0)‖ ≤ c‖T (x0)− x0‖

implies that T (x0) = x0 since 0 < c < 1. The uniqueness is clear since a fixed point for T is
also a fixed point for TN .

Note that the conclusion of the previous theorem remains true if T : F → F , where F is a
closed set in the Banach space X, and TN is a contraction for some positive integer N . Note
that there is no assumption on F to be compact and/or convex.

Our next result shows that the fixed point depends continuously on a parameter if the mapping
T also depends continuously on the parameter. More precisely we have

Theorem 2.3. Let X be a Banach space and Y a normed space. Let T : X × Y → X be a
continuous mapping. Assume that T is a contraction on X uniformly in Y , that is, there is a
c < 1 such that

‖T (x1, y)− T (x2, y)‖ ≤ c‖x1 − x2‖ for all x1, x2 ∈ X, y ∈ Y.

Then for every fixed y ∈ Y , the mapping x 7→ T (x, y) has a unique fixed point g(y) ∈ X and
the mapping y 7→ g(y) is continuous from Y to X.

Notice that if T : X × Y → X is continuous in Y and is a contraction on X uniformly in Y
then T is continuous on X × Y .

Proof. From Banach’s fixed point theorem it follows that g(y) is uniquely defined for all y ∈ Y .
It remains to prove the continuity of g. For y, ȳ ∈ Y we have

‖g(y)− g(ȳ)‖ = ‖T (g(y), y)− T (g(ȳ), ȳ)‖ ≤

≤ ‖T (g(y), y)− T (g(ȳ), y)‖+ ‖T (g(ȳ), y)− T (g(ȳ), ȳ)‖ ≤

≤ c‖g(y)− g(ȳ)‖+ ‖T (g(ȳ), y)− T (g(ȳ), ȳ)‖

which implies that

‖g(y)− g(ȳ)‖ ≤ 1

1− c
‖T (g(ȳ), y)− T (g(ȳ), ȳ)‖.

The RHS tends to 0 as y → ȳ and the continuity of g is proven.

Before we turn to some examples we squeeze in a generalization of Banach’s fixed point theorem
due to Boyd-Wong.

Theorem 2.4. Let X be a Banach space and T : X → X. Assume there exists a continuous
function φ : [0,∞)→ [0,∞) such that φ(r) < r if 0 < r and

‖T (x)− T (y)‖ ≤ φ(‖x− y‖) for all x, y ∈ X.

Then T has a unique fixed point x̄. Moreover for any x0 ∈ X the sequence (Tn(x0))∞n=1

converges to x̄.
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Note that Banach’s fixed point theorem corresponds to φ(r) = cr for 0 ≤ r.

Proof. The uniqueness of the fixed point is obvious. To prove the existence fix a x0 ∈ X. We
will prove the that (Tn(x0))∞n=1 is a Cauchy sequence. For n = 1, 2, 3, . . . set xn+1 = T (xn)
and

an = ‖xn − xn−1‖.

It is clear that an+1 ≤ φ(an) so an converges monotonically to some a ≥ 0. From the continuity
of φ we get a ≤ φ(a) and hence a = 0. If (xn)∞n=1 is not a Cauchy sequence then there exists
an ε > 0 and integers mk > nk ≥ k for every positive integer k such that

bk ≡ ‖xmk − xnk‖ ≥ ε all k = 1, 2, 3, . . .

In addition by choosing the smallest possible mk we may assume

‖xmk−1 − xnk‖ < ε.

Therefore
ε ≤ bk ≤ ‖xmk − xmk−1‖+ ‖xmk−1 − xnk‖ < amk + ε

implying that bk → ε as k →∞. Moreover

bk ≤ ‖xmk − xmk+1‖+ ‖xmk+1 − xnk+1‖+ ‖xnk+1 − xnk‖ ≤ amk+1 + φ(bk) + ank+1

and taking the limit as k → ∞ we get ε ≤ φ(ε). Contradiction! Hence (Tn(x0))∞n=1 is a
Cauchy sequence.

We end this section by two examples. For the first one compare with the introductory example
in the first section.

Example: Let K(x, y) be a continuous real-valued function for 0 ≤ y ≤ x ≤ 1 and let v(x)
be a continuous real function for 0 ≤ x ≤ 1. Then there is a unique continuous real function
z(x) such that

z(x) = v(x) +

∫ x

0
K(x, y)z(y) dy, 0 ≤ x ≤ 1.

To prove this we consider the Banach space C([0, 1]) with the sup-norm and define the integral
operator L : C([0, 1])→ C([0, 1]) by

Lz(x) =

∫ x

0
K(x, y)z(y) dy.

Clearly Ln will be an integral operator on C([0, 1]) given by a kernel function Kn(x, y). To
find this function set K1(x, y) = K(x, y) and assume that Kn(x, y) is known. Then we obtain

(Ln+1z)(x) =

∫ x

0
K(x, t)(Lnz)(t) dt =

∫ x

0
K(x, t)

∫ t

0
Kn(t, y)z(y) dy dt =

=

∫ x

0
(

∫ x

y
K(x, t)Kn(t, y) dt)z(y) dy =

∫ x

0
Kn+1(x, y)z(y) dy.
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Hence
Kn+1(x, y) =

∫ x

y
K(x, t)Kn(t, y) dt, 0 ≤ y ≤ x ≤ 1.

The function K(x, y) is continuous on the closed set {(x, y) : 0 ≤ y ≤ x ≤ 1} and so it is
bounded, say

|K(x, y)| ≤M

for all 0 ≤ y ≤ x ≤ 1. Then again by induction we see that

|Kn(x, y)| ≤ Mn|x− y|n−1

(n− 1)!

for all 0 ≤ y ≤ x ≤ 1. Indeed if this holds for n then for 0 ≤ y ≤ x ≤ 1

|Kn+1(x, y)| ≤
∫ x

y
M
Mn|t− y|n−1

(n− 1)!
dt =

Mn+1|x− y|n

n!
.

Hence if N is sufficiently large we have

|KN (x, y)| ≤ 1

2

for 0 ≤ y ≤ x ≤ 1 and so

|(LNz)(x)| ≤
∫ x

0
|KN (x, y)| |z(y)| dy ≤ 1

2
‖z‖,

i.e.
‖LN‖ ≤ 1

2
.

We now define T : C([0, 1])→ C([0, 1]) by Tz = v + Lz. This gives

TNz = (ΣN−1
k=0 L

k)v + LNz,

which yields that TN is a contraction on C([0, 1]). By Theorem 2.2 the mapping T has a
unique fixed point.

Example: Let K(x, y) and f(y, z) be continuous real-valued functions for 0 ≤ x, y ≤ 1 and
z ∈ R. Moreover let v(x) be a continuous real function for 0 ≤ x ≤ 1. Assume that

|f(y, z1)− f(y, z2)| ≤ N |z1 − z2|

for all 0 ≤ y ≤ 1 and z1, z2 ∈ R and some N > 0. Our claim is that there exists a unique
continuous function z(x) on 0 ≤ x ≤ 1 such that

z(x) = v(x) +

∫ x

0
K(x, y)f(y, z(y)) dy.

As above we define L : C([0, 1])→ C([0, 1]) by

Lz(x) =

∫ x

0
K(x, y)f(y, z(y)) dy
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and show that the map T : C([0, 1])→ C([0, 1]), given by

T (z) = v + Lz

has a unique fixed point. Here comes a nice trick! For a > 0 we introduce a new norm ‖ · ‖a
on C([0, 1]):

‖z‖a =

∫ 1

0
e−ay|z(y)| dy.

Then ‖ · ‖a is indeed a norm on C([0, 1]) which is equivalent to the L1 norm. Set Xa =
(C([0, 1]), ‖ · ‖a) and let X̃a be the completion of Xa. Clearly X̃a is the vector space L1([0, 1])
with the norm ‖ · ‖a, and L extends to a map L̃ : X̃a → X̃a given by the formula for L.
Furthermore with

M = max
0≤x,y≤1

|K(x, y)|

we have for z1, z2 ∈ X̃a

‖L̃z1 − L̃z2‖a =

∫ 1

0
e−ay|

∫ y

0
K(y, t)(f(t, z1(t))− f(t, z2(t))) dt| dy ≤

≤MN

∫ 1

0

∫ y

0
e−ay|z1(t)− z2(t)| dt dy = MN

∫ 1

0

∫ 1

t
e−ay|z1(t)− z2(t)| dy dt =

= MN

∫ 1

0

e−at − e−a

a
|z1(t)− z2(t)| dt ≤ MN

a
‖z1 − z2‖a.

This shows that for a > MN the map

L̃ : X̃a → X̃a

is a contraction and so is T̃ = v + L̃. It easily follows that T̃ maps X̃a into Xa, so the unique
fixed point belongs to C([0, 1]), and is also the unique fixed point for T .

Another version of the trick above is to equip C([0, 1]) with the norm

|z|a = sup
x∈[0,1]

|e−axz(x)|

with a large enough, which is equivalent to the standard sup-norm on C([0, 1]). The reader
is asked to check that the calculations above go through, i.e. L will be a contraction in
(C([0, 1]), | · |a). An advantage here is that we do not need to consider any completion X̃a.

2.3 Brouwer and Schauder fixed point theorems

We begin by formulating Brouwer’s fixed point theorem.

Theorem 2.5 (Brouwer’s fixed point theorem). Assume that K is a compact convex subset
of Rn and that T : K → K is a continuous mapping. Then T has a fixed point in K.
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Observe that it does not follow from Brouwer fixed point theorem that the fixed point is
unique. Consider for instance the identity operator on a compact convex set K in Rn for
which every x ∈ K is a fixed point.

Example 1: Take a street map for Goteborg and place it on the floor of a lecture room at
Chalmers, say room MVF31. Then there will be a point on the map that coincides with the
corresponding point in Goteborg. This follows from both Banach’s fixed point theorem and
Brouwer’s fixed point theorem, where the former theorem also gives that the point is unique.
Prove this to yourself!

Example 2: Let Tα denote the rotation α degrees around the center for a closed disc K
of radius 1. Then Brouwer’s fixed point theorem gives the existence of a fixed point for Tα
(of course it is overkill to use a fixed point theorem to see that) while Banach’s fixed point
theorem cannot be applied directly3 since Tα is not a contraction. It is obvious that the center
of K is a fixed point but Brouwer’s fixed point theorem also tells us that it is not possible to
compose the rotation with a continuous deformation of the disc into itself in such a way that
the composed mapping has no fixed point.

We note that

• (generalization of Brouwer’s fixed point theorem): If there exists a homeomorphism, i.e.
a continuous bijection with continuous inverse, between a compact convex set K in Rn

and a set K̃, call the homeomorphism ϕ, and T̃ : K̃ → K̃ is a continuous mapping then
T̃ has a fixed point. To see this consider the mapping T = ϕ−1 ◦ T̃ ◦ ϕ.
Exercise: Prove that T̃ has a fixed point.

• it is enough to prove Brouwer fixed point theorem in the case K = B(0, 1), where
B(a, r) = {x ∈ Rn : ‖x− a‖ < r}.

There are many proofs for Brouwer’s fixed point theorem, both analytical, topological and also
combinatorial. One starting point for a proof could be the following. Assume thatK = B(0, 1)
and that T has no fixed point. Define the mapping A : B(0, 1)→ B(0, 1) as follows: For every
inner point x in B(0, 1) let x̃ denote the point on the boundary ∂B(0, 1) that is the intersection
of the ray from T (x) through x and the boundary ∂B(0, 1). The ray is always well-defined
since T has no fixed point. Now set

A(x) =

{
x̃ if x ∈ B(0, 1)
x if x ∈ ∂B(0, 1)

Then A is a continuous mapping from B(0, 1) into ∂B(0, 1) (verify this!) such that A|∂B(0,1) =
I|∂B(0,1). The challenge to show that T has no fixed point is now reformulated as to show that
there is no continuous mapping A : B(0, 1) → ∂B(0, 1) such that A|∂B(0,1) = I|∂B(0,1). The

3Assume that the disc has its center at the origin in Rn. Apply Banach’s fixed point theorem to the
operators Tn = (1− 1

n
)T, n = 1, 2, . . .. We obtain a sequence of fixed points xn to Tn such that

‖T (xn)− xn‖ ≤
1

n
, n = 1, 2, 3, . . . .

The result follows from Theorem 1.1 above.
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fact that there is no such mapping is deep but never the less intuitively obvious. Consider, for
n = 2, an elastic membrane fixed on a circular frame. The existence of a mapping A implies
that it should be possible to deform the membrane continuously in such a way that it in the
end coincides with the frame without being fractured. For fixed x ∈ B(0, 1) the mapping

t 7→ (1− t)x+ tA(x), t ∈ [0, 1]

describes how this point on the membrane is moved from x at t = 0 to A(x) ∈ ∂B(0, 1) at
t = 1, under the deformation. Do not forget that the membrane should be fixed at the frame!!!

A beautiful proof based on Sperner’s lemma will be indicated in the Exercises, see Section 6.

We present Perron’s theorem as an application of Brouwer’s fixed point theorem. Schauder’s
fixed point theorem will be applied in the context of nonlinear differential/integral equations
to prove the existence of solutions.

Theorem 2.6 (Perron’s theorem). Let A be a real n× n–matrix with positive entries. Then
there exists a positive eigenvalue for the linear mapping given by the matrix A, with an eigen-
vector with positive entries

To prove Perron’s theorem let K denote the set

{(x1, . . . , xn) : xi ≥ 0 all i, Σn
i=1xi = 1}

and define T (x) = Ax/‖Ax‖l1 for x ∈ K. Apply Brouwer’s fixed point theorem.

In a finite-dimensional normed space compactness is equivalent to closedness and boundedness.
This is not the case in an infinite-dimensional normed space. The following example due to
Kakutani should be compared to the next fixed point theorem due to Schauder.

Example: Let B denote the closed unit ball in l2(Z), where l2(Z) consists of all elements
x = (. . . , x−1, x0, x1 . . .) such that ‖x‖ = (Σ∞n=−∞|xn|2)

1
2 < ∞. It is clear that B is convex

and bounded. Let z be the element in l2(Z) that satisfies z0 = 1 and zn = 0 for n 6= 0 and let
S denote the shift operator defined by (S(x))n = xn−1 for n ∈ Z. Set

T : l2(Z)→ l2(Z),

where
T (x) = S(x) + (1− ‖x‖)z.

For x ∈ B we have
‖T (x)‖ ≤ ‖S(x)‖+ (1− ‖x‖) = 1,

i.e. T (x) ∈ B. But T has no fixed point in B since

(T (x))n = xn−1, n 6= 0

and
(T (x))0 = x−1 + (1− ‖x‖),

which implies that x0 = x1 = . . . = xn = . . . and x−1 = x−2 = . . . = x−n = . . .. This yields a
contradiction since x ∈ l2(Z).
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From this example we see that a generalization of Brouwer’s fixed point theorem to infinite-
dimensional spaces should have the assumption that T (K) is a compact set. We next formulate
two versions of Schauder’s fixed point theorem.

Theorem 2.7 (Schauder’s fixed point theorem). Assume that K is a convex compact set in
a Banach space X and that T : K → K is a continuous mapping. Then T has a fixed point.

For applications the following generalization proves to be useful.

Theorem 2.8 (generalization of Schauder’s fixed point theorem). Let F be a closed convex
set in a Banach space X and assume that T : F → F is a continuous mapping such that T (F )
is a relatively compact subset of F . Then T has a fixed point.

We recall that a set K1 ⊂ X is compact4 if every sequence in K1 has a convergent subsequence
in K1. Moreover we say that K2 ⊂ X is relatively compact if every sequence in K2 has a
subsequence that converges in X. The limit element of the converging sequence belongs to
K2. The set K2 being relatively compact implies that K2 is a compact set. Also an arbitrary
subset of a compact set is relatively compact.

To prove Schauder’s fixed point theorem we will make use of some new concepts and facts for
compact sets. We say that the convex hull of a set F , denoted by coF , is the set defined by⋂

F⊂H,H convex

H.

By a convex combination of the elements x1, x2, . . . , xn we mean a linear combination Σn
i=1λixn,

where all λi ≥ 0 and Σn
i=1λi = 1. An ε–net is a subset Fε of F with the property that for each

x ∈ F there exists a y ∈ Fε such that ‖x− y‖ < ε.

Proposition 2.1. The following statements are true:

1. A set F is relatively compact iff for each ε > 0 there exists a finite ε–net.

2. A set K is compact iff it is closed and for every ε > 0 there exists a finite ε–net.

3. The set coF is the same as the set of all convex combination of finitely many elements
in F .

4. The convex hull of a finite set is compact.

5. K compact set implies that coK is compact.

The proof is left as an exercise. Here the last statement is not so easy to establish.

The proof of Schauder’s fixed point theorem is quite easy to prove compared to Brouwer’s
fixed point theorem. Actually by an approximation procedure one can apply Brouwer’s fixed
point theorem to get the result in Schauder’s theorem.

4This definition of compactness and relative compactness is sometimes referred to as sequential compactness
and sequential relatively compactness in the literature. The words compactness and relatively compactness
are then reserved to mean the following: A set K in a normed space is called compact if for each open cover of
K there is a finite subcover. An open cover of K is a collection of open sets Oλ, λ ∈ Λ, whose union contains
K as a subset. A finite subcover is a finite subset of {Oλ}λ∈Λ whose union also contains the set K. It can be
shown that for metric spaces X the notions sequentially compact and compact are equivalent.
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Proof. (of the Schauder theorems) The second Schauder theorem is a consequence of the first
one. To see this assume that the hypothesis of the second theorem are satisfied. It then follows
that the closed hull R of R = T (F ) is compact and so also coR. Set K = coR. We see that
K ⊂ F since F is closed and convex. Moreover T : K → K is continuous. Hence the second
theorem follows from the first theorem.

It remains to prove the first theorem. This will be done by approximating the compact set K
by compact sets Kn, n = 1, 2, . . . in finite-dimensional spaces and approximating the mapping
T by continuous mappings Tn : Kn → Kn, where the approximation becomes better and
better for larger n. Brouwer’s fixed point theorem gives a sequence of fixed points (xn) for the
sequence (Tn), from which a converging subsequence of points (xnk) can be extracted. The
limit element of this sequence will be a fixed point for T .

For every positive integer n we define mappings Pn, called Schauder projections, as follows:
The compactness of K implies that there are finitely many elements x1, . . . , xk ∈ K such that

K ⊂
k⋃
i=1

B(xi,
1

n
).

Set
fi(x) = max(0,

1

n
− ‖x− xi‖), i = 1, . . . , k.

For every x ∈ K there exists an i such that fi(x) > 0. This implies that Σk
i=1fi(x) > 0 for all

x ∈ K. Set Kn = co{x1, . . . , xk} and

Pn(x) =
Σk
i=1fi(x)xi

Σk
i=1fi(x)

, x ∈ K.

Finally we define Tn = PnT |Kn . We can now apply Brouwer’s theorem to every mapping

Tn : Kn → Kn, n = 1, 2, . . .

This yields a sequence of fixed points x̃n for Tn, i.e.

PnT (x̃n) = x̃n,

and hence we get

‖T (x̃n)− x̃n‖ <
1

n
.

Schauder’s theorem now follows from Lemma 1.1.

2.4 Continuity and applications

To apply the fixed point theorems above some results for continuous functions will often be
used.

Theorem 2.9. Assume that T is a continuous mapping between two Banach spaces X and
Y . Then the following statements are true:
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1. If K is a compact set in X then T (K) is a compact set in Y .

2. If Y = R then T attains its maximum and its minimum on every compact set K in X,
i.e. there are x0, x1 ∈ K such that

sup
x∈K

f(x) = T (x0) = max
x∈K

T (x)

and
inf
x∈K

T (x) = T (x1) = min
x∈K

T (x).

3. T is uniformly continuous on every compact set in X.

The different notions of continuity that will be used are the following:
Let T : X → Y be a mapping between two Banach spaces. Then T is called

continuous if for every x ∈ X and each ε > 0 there exists a δ = δ(x, ε) > 0 such that for
every y ∈ X

‖y − x‖X < δ ⇒ ‖T (y)− T (x)‖Y < ε.

uniformly continuous on A, where A ⊂ X, if for every ε > 0 there exists a δ = δ(ε) > 0
such that for every x, y ∈ A we have

‖y − x‖X < δ ⇒ ‖T (y)− T (x)‖Y < ε.

If Tλ : X → Y , λ ∈ Λ is a set of mappings (finitely many or infinitely many) between two
Banach spaces then these are called

equicontinuous on A, where A ⊂ X, if for every ε > 0 there exists a δ = δ(ε) > 0 such that
for every pair of elements x, y ∈ A and every λ ∈ Λ we have

‖y − x‖X < δ ⇒ ‖Tλ(y)− Tλ(x)‖Y < ε.

Proof. (of Theorem 2.8) To prove statement 1) let T : X → Y be a continuous mapping
and K a compact set in X. Pick an arbitrary sequence (yn) ⊂ T (K). Then there exists a
sequence (xn) in K such that T (xn) = yn for all n. The sequence (xn) might not be uniquely
determined since T is not assumed to be injective. But since K is a compact set there exists a
convergent subsequence (xnk) of (xn) in K, i.e. there is an element x ∈ K such that xnk → x
as k →∞. Moreover since T is continuous we have

xnk → x⇒ ynk = T (xnk)→ T (x) ∈ T (K).

This proves 1).

The proof of statement 2) is left as an exercise.

To prove statement 3) assume that K is a compact set of X and that T : X → Y is continuous.
Moreover assume that T is not uniformly continuous on K. Then there exists an ε > 0 such
that for all positive integers n there are points xn, yn ∈ K such that

‖yn − xn‖X <
1

n
(17)
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and
‖T (yn)− T (xn)‖Y ≥ ε. (18)

But K is a compact set and so there exists a convergent subsequence (xnk) of (xn), i.e. for
some x ∈ K we have xnk → x. From (17) it follows that ynk → x since we have

‖ynk − x‖X ≤ ‖ynk − xnk‖X + ‖xnk − x‖X .

Moreover T is continuous and so T (xnk)→ T (x) and T (ynk)→ T (x). This gives a contradic-
tion of (18). The statement 3) is proved.

The Banach spaces that will be used in applications are C(A) and Lp(A), 1 ≤ p < ∞. Here
A stands for different subsets of Rn for n ≥ 1. Of course the norms should be the proper ones
e.g. the sup-norm should be used for C(A). We tacitly understand that the proper norm is
used unless something else is stated. In the context of Schauder’s fixed point theorem it is
important to be able to conclude whether or not a subset of C(A) or Lp(A) is compact.

Example: Let S be the set {f ∈ C([0, 1]) : f(0) = 0, f(1) = 1, ‖f‖ ≤ 1} and the operator T
defined by T (f)(x) = f(x2), x ∈ [0, 1]. The norm ‖·‖ is the max-norm. It is easy to show that
S is a closed bounded convex set in C([0, 1]) and that T is a continuous mapping. Moreover
it is straight-forward to show that T has no fixed point in S. The conclusion is thus that S is
not a compact set in C([0, 1]).

Our next result gives a characterization of the compact sets in C(A).

Theorem 2.10 (Arzela-Ascoli theorem). Assume that K is a compact set in Rn, n ≥ 1 (e.g.
K = [a, b] ⊂ R). Then a set S ⊂ C(K) is relatively compact in C(K) iff the functions in S
are uniformly bounded and equicontinuous on K.

To say that the functions in S are uniformly bounded means that there exists a M > 0 such
that

‖f‖ = sup
x∈K
|f(x)| ≤M all f ∈ S.

To say that the functions in S are equicontinuous on K means that for every ε > 0 there exists
an δ > 0 such that for every x, y ∈ K and every f ∈ S we have

|x− y| < δ ⇒ |f(x)− f(y)| < ε.

The Arzela-Ascoli theorem can be generalized to the whole of Rn if we assume that the
functions uniformly tends to 0 at infinity i.e. as |x| → ∞.

We give the main steps in a proof of the Arzela-Ascoli theorem above.

• Show that there exits a countable dense set {x1, x2, x3, . . . , xn, . . . } in K (follows from
K being compact and hence has a finite ε-net for all ε > 0)

• Consider an arbitrary sequence (fn)∞n=1 in S. From the boundedness of the sequence
(fn)∞n=1 we can find a subsequence (fn,1)∞n=1 of (fn)∞n=1 such that the sequence (fn(x1))∞n=1

converges in R if the functions are real-valued. Inductively we can for a subsequence
(fn,k)

∞
n=1 of (fn)∞n=1 that converges at x1, x2, . . . , xk find a subsequence (fn,k+1)∞n=1 of

(fn,k)
∞
n=1 that also converges at xk+1 in R.
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• Define the subsequence (gn)∞n=1 of (fn)∞n=1 by gn = fn,n, n = 1, 2, 3, . . ., i.e. we consider
the diagonal sequence. This sequence converges at every xk, k = 1, 2, 3, . . ..

• From the equicontinuity of S we can prove that that the sequence (gn)∞n=1 converges in
S ⊂ C(K).

• These steps show the "if"-part of the Arzela-Ascoli theorem. The "only if"-part of the
theorem is easy to prove.

Next we formulate a criteria for compactness for sets of Lp-functions.

Theorem 2.11 (Riesz, Kolmogorov). Assume that 1 ≤ p < ∞ and that S ⊂ Lp(Rn). Then
S is relatively compact in Lp(Rn) iff the following conditions are satisfied:

1. S is a bounded set in Lp(Rn), i.e. there exists a M > 0 such that ‖f‖Lp ≤ M for all
f ∈ S,

2. limx→0

∫
Rn |f(y + x) − f(y)|p dy = 0 uniformly in S, i.e. for every ε > 0 there exists a

δ > 0 such that

|x| < δ and f ∈ S ⇒ ‖f(·+ x)− f(·)‖ ≡ (

∫
Rn
|f(y + x)− f(y)|p dy)1/p < ε,

3. limR→∞ ‖f‖Lp(Rn\B(0,R)) = (
∫
|x|>R |f(x)|p dx)1/p = 0 uniformly in S, i.e. for every ε > 0

there exists a ω > 0 such that

R > ω och f ∈ S ⇒ (

∫
|x|>R

|f(x)|p dx)1/p < ε.

The above results can be found in most textbooks on functional analysis.

We are now ready to apply Schauder’s theorem. Note the difference between Schauder’s
theorem and Banach’s theorem, namely to apply Banach’s theorem we have to show that a
mapping is “sufficiently small”, while to apply Schauder’s theorem we have to prove that a
mapping is compact. This means, in the C(A) or Lp case, that we have to show that the
image set for the mapping consists of more “regular” functions.

Example (an integral equation of Hammerstein-type): Assume that K(x, y) is a con-
tinuous function for 0 ≤ x, y ≤ 1 and that f(y, z) is a bounded continuous function for
0 ≤ y ≤ 1 and z ∈ R. Then the equation

z(x) =

∫ 1

0
K(x, y)f(y, z(y)) dy

has a solution z ∈ C([0, 1]).

We want to prove that T has a fixed point where

(T (z))(x) =

∫ 1

0
K(x, y)f(y, z(y)) dy.
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To show this we will apply the generalization of Schauder’s fixed point theorem. We will choose
a closed convex subset S ⊂ C([0, 1]) such that the mapping T : S → C([0, 1]) is continuous
and such that the image set T (S) is relatively compact in C([0, 1]).

First we observe that T maps continuous functions to continuous functions, i.e. that we have

T (C([0, 1])) ⊂ C([0, 1]).

This can be seen as follows: From the hypothesis there exists a B > 0 such that

|f(y, z)| ≤ B if (y, z) ∈ [0, 1]× R.

Moreover K(x, y) is continuous on the compact set [0, 1] × [0, 1] and hence K is uniformly
continuous on [0, 1]× [0, 1]. Fix an ε > 0. Then there exists a δ > 0 such that

|K(x, y)−K(x̃, ỹ)| < ε

B
if |(x, y)− (x̃, ỹ)| < δ.

Consequently for any z ∈ C([0, 1]) we have

|(T (z))(x)− (T (z))(x̃)| = |
∫ 1

0
(K(x, y)−K(x̃, y))f(y, z(y)) dy| ≤

≤
∫ 1

0
|K(x, y)−K(x̃, y)||f(y, z(y))| dy ≤ B

∫ 1

0
|K(x, y)−K(x̃, y)| dy < ε

provided |x− x̃| < δ. This means that T (z) ∈ C([0, 1]).

A natural choice for the closed convex set S is

S = {z ∈ C([0, 1]) : ‖z‖ ≤ D},

where D > 0 is a constant that should be chosen such that T (S) ⊂ S. We note that since K
is continuous on the compact set [0, 1]× [0, 1] there exists an A > 0 such that

|K(x, y)| ≤ A if (x, y) ∈ [0, 1]× [0, 1].

This implies that

|(T (z))(x)| = |
∫ 1

0
K(x, y)f(y, z(y)) dy| ≤

∫ 1

0
|K(x, y)||f(y, z(y))| dy ≤ AB

for z ∈ C([0, 1]). Hence we get
‖T (z)‖ ≤ D

provided we choose D ≥ AB. Set D = AB. With this choice for S we get

T (S) ⊂ S.

To apply Schauder’s theorem we have to show that T (S) is relatively compact in C([0, 1])
and that T is continuous on S. The relatively compactness is consequence of Arzela-Ascoli
theorem once we have shown that T (S) is uniformly bounded and equicontinuous on S.

We have above verified that T (C([0, 1])) is uniformly bounded and equicontinuous on S. It
remains to prove that T : S → T (S) is continuous. From the definition of S it follows that
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|z(x)| ≤ D for all x ∈ [0, 1]. The continuity of f(y, z) on the compact set [0, 1] × [−D,D]
implies that f is uniformly continuous on [0, 1]× [−D,D]. Fix an arbitrary ε > 0. Then there
exists a δ > 0 such that

|f(y, z)− f(ỹ, z̃)| < ε

A
if |(y, z)− (ỹ, z̃)| < δ.

Hence for arbitrary z1, z2 ∈ S with ‖z1 − z2‖ < δ we have

‖T (z1)− T (z2)‖ = sup
x∈[0,1]

|
∫ 1

0
K(x, y)(f(y, z1(y))− f(y, z2(y))) dy| ≤

≤ sup
x∈[0,1]

∫ 1

0
|K(x, y)||(f(y, z1(y))− f(y, z2(y)))| dy ≤

≤ A
∫ 1

0
|(f(y, z1(y))− f(y, z2(y)))| dy < ε.

Now we have shown that T is continuous on S. Schauder’s fixed point theorem implies that
the equation z = T (z) has at least one solution.

2.5 Some more fixed point theorems

We conclude this note with some additional fixed point theorems. The first one, Schaefer’s
fixed point theorem, is a version of Schauder’s theorem. Sometimes it is called the Leray-
Schauder principle and is an example of the mathematical principle saying ”apriori estimates
implies existence”. The second one, Krasnoselskii’s fixed point theorem, is a mix of Banach’s
and Schauder’s fixed point theorems.

Theorem 2.12 (Schaefer’s fixed point theorem). Assume that X is a Banach space and that
T : X → X is a continuous compact5 mapping. Moreover assume that the set⋃

0≤λ≤1

{x ∈ X : x = λT (x)}

is bounded. Then T has a fixed point.

Proof. Assume that the mapping T satisfies the hypothesis in the theorem. Pick a R > 0 such
that

x = λT (x) and 0 ≤ λ ≤ 1

implies that
‖x‖ < R.

Define the mapping T̃ : X → X as follows:

T̃ (x) =


T (x) if ‖T (x)‖ ≤ R

R
‖T (x)‖T (x) if ‖T (x)‖ > R

5T is a compact mapping if (T (xn))∞n=1 has a convergent subsequence for every bounded sequence (xn)∞n=1

in X. Usually by a compact (or completely continuous) mapping one means a continuous mapping with the
property above. For linear mappings the continuity follows from this property but it is not true in general for
nonlinear mappings.
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This implies that T̃ : X → X is a compact operator. To show this take a bounded sequence
(xn)∞n=1 in X. Then there exists a subsequence (xnk)∞k=1 such that ‖T (xnk)‖ < R for all k
or ‖T (xnk)‖ ≥ R for all k. In the first case (T̃ (xnk))∞k=1 has a convergent subsequence since
T̃ (xnk) = T (xnk) and T is a compact mapping. In the second case we get that (T (xnk))∞k=1 has
a convergent subsequence, denote it by (T (xl))

∞
l=1 for convenience. But then it follows that also

(‖T (xl)‖)∞l=1 converges, where also ‖T (xl)‖ ≥ R for all l. Hence we have T̃ (xl) = R
‖T (xl)‖T (xl).

Set
K = co T̃ (B(0, R)).

Here K is convex (it is the closed convex hull of a set), compact (the convex hull of a compact
set is compact and T̃ is a compact mapping) subset of X such that

T̃ : K → K.

Schauder’s fixed point theorem implies that T̃ has a fixed point x0 ∈ K. But x0 is a fixed
point for T if ‖T (x0)‖ ≤ R. Assume that ‖T (x0)‖ > R. This yields a contradiction since
x0 = T̃ (x0) = λT (x0), where λ = R

‖T (x0)‖ ∈ (0, 1), since according to the hypothesis of the
theorem it should follow that ‖T (x0)‖ = ‖x0‖ < R. This proves the theorem.

Note that to apply Schaefer’s theorem we do not need to prove that a certain set is convex or
compact. The problem is reformulated as to show a certain a priori estimate for the operator
T .

Theorem 2.13 (Krasnoselskii’s fixed point theorem). Assume that F is a closed bounded
convex subset of a Banach space X. Furthermore assume that T1 and T2 are mappings from
F into X such that

1. T1(x) + T2(y) ∈ F for all x, y ∈ F ,

2. T1 is a contraction,

3. T2 is continuous and compact.

Then T1 + T2 has a fixed point in F .

Proof. Assume that the mappings T1, T2 satisfies the hypothesis of the theorem. In particular
there exists a c ∈ (0, 1) such that

‖T1(x)− T1(y)‖ ≤ c‖x− y‖, x, y ∈ F.

This yields

‖(I − T1)(x)− (I − T1)(z)‖ ≥ ‖x− z‖ − ‖T1(x)− T1(z)‖ ≥ (1− c)‖x− z‖

and
‖(I − T1)(x)− (I − T1)(z)‖ ≤ ‖x− z‖+ ‖T1(x)− T1(z)‖ ≤ (1 + c)‖x− z‖.
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Consequently I − T1 : F → (I − T1)(F ) is a homeomorphism, and (I − T1)−1 exists as a
continuous mapping from (I −T1)(F ). Furthermore we note that for each y ∈ F the equation

x = T1(x) + T2(y)

has a unique solution x ∈ F according to Banach’s fixed point theorem. From this we conclude
that T2(y) ∈ (I −T1)(F ) for every y ∈ F and also that (I −T1)−1T2 : F → F is a well-defined
continuous mapping. Since T2 is a compact mapping it follows that (I − T1)−1T2 : F → F is
a compact mapping. Finally the generalization of Schauder’s fixed point theorem yields the
conclusion of the theorem.

We recommend anyone interested in fixed point theorems to browse through the books [2] and
[1] where additional results and many more references can be found.
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3 Lp-spaces

3.1 Introduction

A basic feature for the important results in this course – Banach’s fixed point theorem,
Brouwer’s fixed point theorem, Schauder’s fixed point theorem, Hilbert-Schmidt theorem and
others – is that the mappings that appear should be defined on complete normed spaces =
Banach spaces. The completeness is crucial and the theorems would no longer be true without
the assumption on completeness.

A technique often used to prove existence of a solution to a problem (and also to find the
solution) is to find solutions to approximate problems and by improving the approximations
it can sometimes be possible to obtain a sequence of approximative solutions that forms a
Cauchy sequence in a proper space. A solution to the original problem can then often be
obtained as the limit of the Cauchy sequence provided the space is a Banach space.

An example of a function space that often appears is the vector space of all continuous func-
tions defined on Rn or some “nice”6 subset Ω of Rn, with pointwise defined addition and
multiplication by scalars. We note the if C(Ω) is equipped with the sup-norm, i.e.

‖f‖ = sup
t∈Ω
|f(t)|, f ∈ C(Ω),

then the normed space (C(Ω), ‖ · ‖) becomes a Banach space. But if C(Ω) is supplied with
the norm

‖f‖1 =

∫
Ω
|f(t)| dt, f ∈ C(Ω),

then (C(Ω), ‖ · ‖1) is a normed space but not a Banach space. See for instance example 1
below. The set Ω is supposed to be a compact subset of Rn so all integrals are finite. It is a
pity that (C(Ω), ‖ · ‖1) is not a Banach space since the norm ‖ · ‖1 gives a natural measure of
size. If f is a density function then ‖f‖1 corresponds to the total mass. Moreover in physics
the integral

‖f‖2 = (

∫
Ω
|f(t)|2 dt)1/2, f ∈ C(Ω).

measures the “energy” of a system described by f . In general it is natural to consider norms

‖f‖p = (

∫
Ω
|f(t)|p dt)1/p, f ∈ C(Ω),

where p ∈ [1,∞). To see that these expressions really define norm functions the same technique
that was used to prove the corresponding statements for the sequence spaces lp can be used.

Example 1: Consider the set Ω = [0, 1] ⊂ R and define

fn(t) =


0 t ∈ [0, 1

2)
2n(t− 1

2) t ∈ [1
2 ,

1
2 + 1

2n)
1 t ∈ [1

2 + 1
2n , 1]

6We assume that Ω is compact and equal to the closure of its interior.
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for n = 1, 2, . . . Sketch the graph for fn here!

We see that (fn)∞n=1 defines a Cauchy sequence in the normed space (C[0, 1], ‖ ‖1) since

‖fn − fm‖1 =

∫ 1
2

+ 1
2 min(n,m)

1
2

|fn(t)− fm(t)| dt

≤ 1

2 min(n,m)
→ 0, n,m→∞.

However there is no continuous function f such that fn → f in (C[0, 1], ‖ ‖1). Prove this! On
the other hand the sequence (fn)∞n=1 converges pointwise to h given by

h(t) =

{
0 t ∈ [0, 1

2 ]
1 t ∈ (1

2 , 1]
.

h is not continuous but still Riemann integrable and satisfies

lim
n→∞

‖fn − h‖1 = 0.

The fact that the function h above is Riemann integrable might suggest that

(Riemann integrable functions, ‖ · ‖1) (19)

is a Banach space. It is clear that linear combinations of Riemann integrable functions are
Riemann integrable and that also products of Riemann integrable functions are Riemann
integrable7. However Riemann integrable functions are not closed under pointwise limits as
seen from the following example.

Example 2: Let Ω denote the interval [0, 1] and let {r1, r2, r3, . . .} be an enumeration of all
rational numbers in the interval [0, 1]. For n = 1, 2, . . . define

fn(t) = χ{r1,...,rn}(t) =

{
1 t ∈ {r1, . . . , rn}
0 t 6∈ {r1, . . . , rn}

.

Moreover set

f(t) = χ{r1,r2,r3,...}(t) =

{
1 t ∈ {r1, r2, r3, . . .}
0 t 6∈ {r1, r2, r3, . . .}

.

7If f is Riemann integrable then so is f2 and if both f and g are Riemann integrable then so is fg since
fg = 1

4
((f + g)2 − (f − g)2).
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We note that fn is Riemann integrable for every n and that (fn)∞n=1 is a Cauchy sequence in
the normed space (Riemann integrable functions, ‖ · ‖1), but the pointwise limit function f is
not Riemann integrable. Prove this! Here should also be observed that ‖ · ‖1 cannot see the
difference between fn for any n and 0. Here 0 denotes the function that is pointwise 0 for all
x ∈ [0, 1]. For ‖ · ‖1 to be a norm for the Riemann integrable functions we have to identify
fn and 0 for all n.

So if we want to have a Banach space containing all Riemann integrable functions we ought
accept f as an element in that space since it is the pointwise limit of the sequence (fn(x))
(we have 0 ≤ fn(x) ↑ f(x) ≤ 1 for all x ∈ [0, 1]). In applications it will be important for us to
have strong convergence theorems of the form

” lim
n→∞

∫
fn dx =

∫
lim
n→∞

fn dx ”.

If this holds for the functions considered above we note that f 6= 0 but neither the less we
have ‖f − 0‖1 = 0. We can not detect the difference between f and 0 measuring with the
‖ · ‖1–norm and have to identify these functions. We will say say that the functions differs on
a set of measure 0. This identification also has to be done for Riemann integrable functions
for ‖ · ‖1 to be a norm.

Considering the ‖ · ‖p–norms, 1 ≤ p <∞ in general, it can be observed that only for p = 2 the
norm is a Hilbert space norm, i.e. there can be defined an inner product 〈·, ·〉 on the vector
space in such a way that ‖x‖ =

√
〈x, x〉 for all x holds true. Neither the sup-norm can be

connected with an inner product. The Hilbert space structure will be important to us in
connection with spectral theory in chapter 4 in [1].

The problem is now to extend the normed space (C(Ω), ‖ ·‖p) to a Banach space. The method
to complete the normed space that is discussed in section 4 chapter 1 in [1] has the disadvantage
that the properties of the elements in the completion can be hard to read off and it is not
obvious that the elements are pointwise defined functions.

However let us quickly remind ourself of the constuction for a completion of a normed space
that is given in [1]: Given a normed space (E, ‖ · ‖) let Ẽ be the set of all equivalence classes
of Cauchy sequences in E, denoted [(xn)]∼, where

(xn)∞n=1 ∼ (yn)∞n=1 if lim
n→∞

‖xn − yn‖ = 0.

We will below make a quick gallop through the landscape of Lebegue integration with stops
at measurable sets, measurable functions, Lebesgue integrals, convergence theorems and Lp–
spaces. Some ideas for the proofs will be sketched. For those who are interested in a thorough
treatment we refer to the books by Folland [3] (textbook on graduate level), Rudin [5] (also
a graduate level textbook), Rudin [5] (a more elementary book), Apostol [1] (has been used
for undergraduate courses at GU) or why not Hörmander [4]. The presentations differ slightly
but most are based on measure theory.
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3.2 Lebesgue measure on Rn

In measure theory we want to generalize the concept of length of an interval in R, area of a
rectangle in R2 on so on to a wider class of sets. The ultimate goal is to assign a measure to
as many sets as possible where the measure has to satisfy certain natural conditions. If all
intervals [a, b] ⊂ R, a < b (as well as the intervals [a, b), (a, b], (a, b)) should have the measure
b− a then there are subsets of the real numbers that are impossible to assign a measure to8.
This is hard to prove and is based on the axiom of choice9.

First let us see for which subsets of a an arbitrary set X it would be natural to be able to
assign measure to. Intuitively it is natural that given countable many sets, where all have a
well-defined measure, all sets that can be obtained by countably many applications with the
set operations union, intersection and complement should also be possible to assign a measure
to. This motivates the following definition.

Definition 3.1. A setM of subsets of X is called a σ–algebra if

1. ∅ ∈ M

2. E ∈M implies X \ E ∈M

3. E1, E2, . . . ∈M implies
⋃∞
n=1En ∈M

A set inM is called a measurable set. Let Bn denote the smallest σ–algebra that contains all
open sets in Rn. This is called the Borel σ–algebra. For simplicity we restrict to the case
n = 1 but what is said holds true for general n. There exists such a smallest σ–algebra, since
the intersection of any collection of σ–algebras is a σ–algebra, and all the intervals of the four
types above are contained here.

Given a σ–algebraM we can talk about a measure µ onM. A measure should satisfy some
properties encoded in the next definition.

Definition 3.2. A measure µ on the σ–algebraM is a mapping

µ :M→ [0,+∞]

such that

1. µ(∅) = 0

2. E1, E2, . . . ∈M mutually disjoint sets implies µ(
⋃∞
n=1En) = Σ∞n=1µ(En)

8A well-known example of this is due to Vitali. Even more striking is the following example in R3 by Banach
and Tarski and which only involves finite additivity. They proved: The unit ball in R3 can be decomposed into
a finite number of pieces which may be reassembled, using only translation and rotation, to form 2 disjoint
copies of the unit ball

9The axiom of choice says that for every class of non-empty sets Eλ, λ ∈ Λ, there exists a set consisting of
one element from every set Eλ.
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The property 2. is called countable additivity for measures and is a key property when defining
Lebesgue integrals. The main question is now whether it is possible to prove the existence of
a unique measure on the Borel σ–algebra with the property that all intervals with end points
at a and b has the measure |b − a|. The answer is yes and this measure is called the Borel
measure. This is the foundation on which the Lp-theory rests. The Lebesgue measure is
obtained by completing the Borel measure in the following sense.

Definition 3.3. Let µ be a measure on a σ–algebraM. Then there exists a σ–algebra M̄ and
a well-defined measure µ̄ : M̄ → [0,+∞] such that E ∈ M̄ iff E = A

⋃
B, where A ∈M and

B ⊂ C ∈M with µ(C) = 0, and µ̄(E) = µ(A).

What has been done is to add all subsets of measurable sets with measure 0 in such a way
that also M̄ becomes a σ–algebra. Note that it follows from the definition that if A,B ∈M,
A ⊂ B, then we have µ(A) ≤ µ(B). We call B̄1 the Lebesgue σ–algebra on R and denote it
by L1 and the completed Borel measure on L1 denoted m is called the Lebesgue measure.

We mentioned above that there are subsets of R that are not Lebesgue measurable. The
following result can be proved.

Theorem 3.1 (Approximation). Let E ⊂ R be Lebesgue measurable. Then we have

m(E) = inf{m(U) : E ⊂ U, U open} = sup{m(K) : K ⊂ E, K compact}.

Moreover if m(E) < ∞ then for every ε > 0 there exists an open set A consisting of finitely
many open intervals such that

m((E \A)
⋃

(A \ E)) < ε.

What has been said about R is true for Rn, n = 2, 3, . . ., provided intervals are replaced by
rectangles parallel to the axis etc. By Ln = L we denote the Lebesgue σ–algebra on Rn, i.e.
the completed Borel σ–algebra Bn, and the approximation theorem above corresponds to a
natural generalization for Rn.

3.3 Lebesgue measurable functions

We will now consider functions f that takes values in R̄ = R
⋃
{±∞} where we define 0·∞ = 0.

What has to be avoided is undefined expressions like ∞−∞. In this section every function
takes values in R̄. We say that the function f : Rn → R̄ is Lebesgue measurable if
f−1([a,∞)) ∈ L for every a ∈ R. Here f−1(U) denotes the set {x ∈ Rn : f(x) ∈ U}, i.e. the
inverse image of U under f . From this definition it follows that f−1(E) ∈ L for every Borel
set E but also that all functions that can be formed using the operations

+ · sup
n=1,2,...

inf
n=1,2,...

lim sup
n=1,2,...

lim inf
n=1,2,...

on Lebesgue measurable functions are Lebesgue measurable. More precisely, given Lebesgue
measurable functions f, g, fn, n = 1, 2, . . . then the functions
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1. f + g, fg, λf , where λ ∈ R

2. max(f, g), min(f, g)

3. supn=1,2,... fn, infn=1,2,... fn

4. lim supn→∞ fn ≡ limk→∞ supn≥k fn, lim infn→∞ fn ≡ limk→∞ infn≥k fn

are also Lebesgue measurable. It can be shown that every continuous function is Lebesgue
measurable! The most important examples of Lebesgue measurable functions are the so called
simple functions that are given by finite linear combinations of characteristic functions for
Lebesgue measurable sets, i.e. functions of the form

ΣN
n=1λnχEn

where χE(t) = 1 if t ∈ E and = 0 if t 6∈ E. We assume that λi 6= λj for i 6= j. Check for
yourself that the simple functions are Lebesgue measurable. The key property for the simple
functions is the following observation.

Theorem 3.2 (Approximation). Let f : Rn → [0,∞] be a Lebesgue measurable function.
Then there exists a sequence of simple functions φn, n = 1, 2, . . . such that

1. 0 ≤ φ1 ≤ φ2 ≤ φ3 ≤ . . .

2. limn→∞ φn(t) = f(t) for all t ∈ Rn

3. φn converges uniformly to f on each set A ⊂ Rn where f is bounded.

We note that the limit function for an increasing sequence of simple functions is also Lebesgue
measurable. But also converse, i.e. that every Lebesgue measurable function (bounded below)
can be obtained as the limit function for an increasing sequence of simple functions.

The proof for the theorem is quite simple. Set

φn = Σ22n−1

k=0 k2−nχEkn + 2nχFn ,

where
Ekn = f−1((k2−n, (k + 1)2−n])

and
Fn = f−1((2n,∞]).

for n = 1, 2, . . .. For an f of your choice draw the graphs for φn!

Next we introduce the term almost everywhere, abbreviated a.e., which means everywhere
except on a set of measure 0. To say that the functions f and g are equal a.e. means that the
set where the functions differ must not be empty but have the Lebesgue measure 0. In the
same way fn → f pointwise a.e. means that the set where we do not have convergence is a
0–set. Since every subset of a 0–set is a 0–set we get

1. f Lebesgue measurable and f = g a.e. implies that g is Lebesgue measurable.
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2. fn, n = 1, 2, . . ., Lebesgue measurable and fn → f pointwise a.e. implies that f is
Lebesgue measurable.

Finally f : Rn → C is called Lebesgue measurable if both Ref and Imf are Lebesgue measur-
able. This is the same as saying that f−1(U) ∈ L for every open set U in C.

3.4 Integrals and convergence theorems

A complex-valued function f can uniquely be written as a sum of its real- and imaginary part

f = Ref + i Imf,

where Ref and Imf are real-valued. Both these functions can be written as a sum of the
positive and the negative part of f . If f is real-valued we denote

f+ = max(f, 0)

and
f− = max(−f, 0).

Hence we get f = f+ − f− (and |f | = f+ + f−). Since we want the integral operator

f 7→
∫
f dm

(not yet defined) to be linear on Lebesgue integrable functions we must have∫
f dm =

∫
(Ref)+ dm−

∫
(Ref)− dm+ i(

∫
(Imf)+ dm−

∫
(Ref)− dm).

So it is enough to define ∫
f dm

for all Lebesgue measurable functions f : Rn → [0,∞]. This will be done in two steps.

Step 1 For f = ΣN
n=1λnχEn , i.e. for a simple function f , we set∫

f dm = ΣN
n=1λnm(En).

Step 2 If f is a Lebesgue measurable function we set∫
f dm = sup{

∫
φdm : φ simple function, 0 ≤ φ ≤ f}.

It can quite easily be shown that the integral is well-defined. The integral can attain the value
+∞ since we have not assumed any size condition for f . We let L+ denote the set of all real
Lebesgue measurable functions that takes values in [0,∞].
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From the definition it follows that f, g ∈ L+ and f ≤ g implies∫
f dm ≤

∫
g dm.

Moreover we let L1 denote the set of all Lebesgue measurable functions f : Rn → C for which

max(

∫
Ref+ dm,

∫
Ref− dm,

∫
Imf+ dm,

∫
Imf− dm) <∞.

This is equivalent to ∫
|f | dm <∞.

Moreover we note that
|
∫
f dm| ≤

∫
|f | dm.

Finally we define ∫
E
f dm =

∫
fχE dm,

for E a Lebesgue measurable set in Rn.

The question is then: What is the difference between the Lebesgue integral and the
Riemann integral? The answer sits in the definitions. Let us for the moment assume
that f attains its values in [0,M ] for some M > 0. Remember that the definition of the
Riemann integral is based on splitting the x–axis into a union of tiny disjoint intervals Ik. Set
Mk = supIk f and mk = infIk f . We get∫

f dx ≈ ΣkMk|Ik|

provided ΣkMk|Ik| ≈ Σkmk|Ik|, where |Ik| denotes the length of the interval Ik. With the
notation ≈ we mean that the difference tends to 0 as supk |Ik| → 0. To have this we need
f to be almost constant on every interval Ik (i.e. Mk − mk ≈ 0) or that the number of all
intervals for which this is not true (i.e. Mk −mk 6≈ 0) is small. Another way to phrase it is
that f should be continuous except for a small set of points with Lebesgue measure 0. Using
our special lingo we say that f is Riemann integrable if the set where f is discontinuous is
a set of Lebesgue measure 0. In the previous example with f = χQ

⋂
[0,1] the set of points of

discontinuity is the whole interval [0, 1] which has Lebesgue measure equal to 1 and not 0.

The definition of the Lebesgue integral is based on splitting the y–axis into small intervals
Ikn = [k2−n, (k + 1)2−n). Here n indicates how fine the decomposition is, more precisely 2−n

is the length of the intervals. Comparing with the definition for simple functions (we assume
that f is non-negative and M < 2n) we have∫

f dm ≈ Σkk2−nm(Ekn),

where we observe that |f −φn| ≤ 2−n on Ekn. See page 6. For the sum to have a meaning it is
needed that m(Ekn) and m(Fn) are well-defined, which is guaranteed by the assumption that
f is Lebesgue measurable. If we return to the function f = χQ

⋂
[0,1] we see that f is 0 except
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at the rational points in the interval [0, 1], which is equal to {r1, r2, . . .}. But every set {rn}
is Lebesgue measurable with the measure 0 and a countable union of 0–sets is a 0–set. Hence
we have

∫
f dm = 0.

We observe that every continuous function which is different from 0 only in a compact subset
of Rn is Riemann integrable, that each Riemann integrable function (with finite ‖ · ‖1–norm)
is Lebesgue integrable and ∫

Rn
f(x) dx =

∫
f dm.

Here the LHS denotes the Riemann integral for f and the RHS denotes the Lebesgue integral
for f .

Below we list some theorems that will become important to us for applications. It is important
to note that the Lebesgue integral is an extension for the Riemann integral with the properties
we wanted: powerful convergence theorems and the function space (L1, ‖ · ‖1) is complete.

Theorem 3.3 (Lebesgue’s monotone convergence theorem). Let (fn)∞n=1 ⊂ L+ be a monotone
increasing sequence of functions. Then we have

lim
n→∞

∫
fn dm =

∫
lim
n→∞

fn dm.

Theorem 3.4 (Fatou’s lemma). Let (fn)∞n=1 ⊂ L+ be a sequence of functions. Then we have∫
lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
fn dm.

Theorem 3.5 (Lebesgue’s dominated convergence theorem). Assume that (fn)∞n=1 is a se-
quence of complex-valued Lebesgue measurable functions such that limn→∞ fn = f a.e. More-
over assume that there exists a Lebesgue measurable function g such that

|fn| ≤ g ∈ L1 all n.

Then we have
f ∈ L1

and
lim
n→∞

∫
fn dm =

∫
f dm.

Theorem 3.6 (Differentiation under the integral sign). Assume that f(t, x) : Rn × [a, b]→ C
and that f(·, x) : Rn → C is a L1–function for each x ∈ [a, b]. Set F (x) =

∫
f(t, x) dm(t).

• Assume that there exists a g ∈ L1 such that

|f(t, x)| ≤ g(t) all t, x.

Then we have
lim
x→x0

F (x) = F (x0)

provided
lim
x→x0

f(t, x) = f(t, x0) all t.
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• Assume that
∂f

∂x
exists and that there is a g ∈ L1 such that

|∂f
∂x

(t, x)| ≤ g(t) all t, x.

Then F is differentiable and

F ′(x) =

∫
∂f

∂x
(t, x) dm(t).

We now assume that n = 1 and recall that a real function is continuously differentiable iff

f(x) =

∫ x

a
g(t) dt

where g is a continuous real function. Furthermore we have f ′ = g. What can be said about
the function ∫ x

a
g(t) dt

where g ∈ L1?

To answer this question we introduce the concept of absolutely continuous function. We
say that the real function f is absolutely continuous if for every ε > 0 there exists a δ > 0
such that

Σ|bn − an| < δ

implies that
Σ|f(bn)− f(an)| < ε.

In particular this means that f is continuous and moreover uniformly continuous on the set
where it is defined. Σ . . . stands for the sum for a finite series.

Theorem 3.7. A real function f(x) is given by
∫ x
a g dm, where g is a locally10 Lebesgue

integrable function, iff f is absolutely continuous. In that case we have f ′ = g a.e..

From calculus course we remember that multiple Riemann integrals can be calculated by
repeated integration. Is this still true for multiple Lebesgue integrals? The answer is contained
in the following result.

Theorem 3.8 (Fubini–Tonelli’s theorem). Assume that f(·, ·) is Lebesgue measurable and that
one of the following conditions are satisfied:

1. (Tonelli) f ≥ 0

2. (Fubini) one of the integrals
∫
|f(x, y)| dm(x, y),

∫
(
∫
|f(x, y)| dm(y)) dm(x),

∫
(
∫
|f(x, y)| dm(x)) dm(y)

is finite.

Then the functions f(·, y), f(x, ·),
∫
f(·, y) dm(y) and

∫
f(x, ·) dm(x) are Lebesgue measurable

and ∫
f(x, y) dm(x, y) =

∫
(

∫
f(x, y) dm(y)) dm(x) =

∫
(

∫
f(x, y) dm(x)) dm(y).

10L1
loc is defined below.
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3.5 Lp–spaces, Hölder’s and Young’s inequalities

For Lebesgue measurable functions f we define

‖f‖p = (

∫
|f |p dm)1/p, p ∈ [1,∞)

and
‖f‖∞ = ess sup |f |.

Here ess sup for real-valued non-negative functions f denotes the quantity

ess supf = inf{k : k ≥ f a.e.}.

We now define the Lp–space as the set of all Lebesgue measurable functions such that ‖f‖p <
∞. This is valid for 1 ≤ p ≤ ∞ and we see that

• ‖f − g‖p = 0 iff f = g a.e. Functions in Lp are identified if they are equal a.e.

• f ∈ Lp implies that |f | <∞ a.e.

• f ∈ L∞ and f continuous implies that ‖f‖∞ = sup |f |. If f is not continuous then we
obtain that the set of all x where f(x) > ‖f‖∞ is a 0–set.

We claim that ‖ · ‖p really defines a norm. If p = 1,∞ this is trivial. For p ∈ (1,∞) it is a
consequence of Hölder’s inequality

‖fg‖1 ≤ ‖f‖p ‖g‖q,

where
1

p
+

1

q
= 1, p > 1. This is established with a similar technique to that which was used for

proving the corresponding statement for the sequence space lp . This yields the Minkowski’s
inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p
for p ∈ (1,∞).

We have now defined Lp as a normed space. The notations Lploc denotes the set of all Lebesgue
measurable functions f for which fχE ∈ Lp for all compact Lebesgue measurable sets E in
Rn.

Theorem 3.9. Lp with the norm ‖ · ‖p is a Banach space for p ∈ [1,∞]. It is separable
(there exists a countable dense set) for p ∈ [1,∞). If (fn)∞n=1 is a Cauchy sequence in Lp for
p ∈ [1,∞) there exists a subsequence (fnk)∞k=1 that converges pointwise a.e.

Try to prove this!!

Let f be a complex-valued function on Rn. The closure of the set {x : f(x) 6= 0} is called
the support for f and we let C∞0 denote the set of all infinitely continuously differentiable
functions with compact support.
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Theorem 3.10. For p ∈ [1,∞) we have

1. Lp
⋂
{ simple functions }

2. C∞0

are both dense in Lp.

Finally we give some inequalities that can come in handy in many calculations.

Theorem 3.11 (Young’s inequality). Assume that k : Rn × Rn → C is Lebesgue measurable
and that

max(sup
x

∫
|k(x, y)| dm(y), sup

y

∫
|k(x, y)| dm(x)) = M <∞.

If f ∈ Lp for some p ∈ [1,∞] then

F (x) =

∫
k(x, y)f(y) dm(y)

belongs to Lp and
‖F‖p ≤M‖f‖p.

Theorem 3.12 (Chebyshev’s inequality). Let f ∈ Lp, p ∈ [1,∞) and α > 0 be given. Then
we have

m({x : |f(x)| > α}) ≤ (
‖f‖p
α

)p.

In hindsight we note that functions that are Lebesgue integrable can be very wild but at the
same time there are continuous nice functions that are close to the wild beasts in Lp-norm.
Often in applications we want to prove that a certain function, appearing as a solution to
some say integral equation, is continuous but from the first consideration we just obtain it as
an element in Lp. However the continuity property for the function can then be established
from the specific problem. What the Lp–theory has contributed with is the existence of a
function that can be proven to have some good properties.
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4 Spectral theory

4.1 Introduction

In this course we focus on equations of the form

Af = g, (20)

where A is a linear mapping, typically an integral operator, and g is a given element in some
normed space which “almost everywhere” in text is a Banach space. The type of questions one
usually and naturally poses are:

1. Is there a solution to Af = g and, if so is it unique?

2. If the RHS g is slightly perturbed, i.e. data g̃ is chosen close to g, will the solution f̃ to
Af̃ = g̃ be close to f?

3. If the operator Ã is a good approximation of the operator A will the solution f̃ to Ãf̃ = g
be a good approximation for f to Af = g?

These questions will be made more precise and to some extent answered below.

One direct way to proceed is to try to calculate the “inverse operator” A−1 and obtain f from
the expression

f = A−1g.

Earlier we have seen examples of this for the case where A is a small perturbation of the
identity mapping on a Banach space X, more precisely for A = I + B with ‖B‖ < 1. Here
the inverse operator A−1 is given by the Neumann series

Σ∞n=0(−1)nBn,

(B0 should be interpreted as I). We showed that if B ∈ B(X,X), where X is a Banach space,
then we got C ≡ Σ∞n=0(−1)nBn ∈ B(X,X) and

• (I +B)C = C(I +B) = IX

• ‖C‖ ≤ 1
1−‖B‖

Sometimes we are able to prove the existence and uniqueness for solutions to equations Af = g
in Banach spaces X without being able to explicitly calculate the solution. An example is
as follows: Assume there exists a family {At}t∈[0,1] of bounded linear operators on a Banach
space that satisfies the following conditions: There exists a positive constant C such that

1. ‖f‖ ≤ C‖Atf‖ for all t ∈ [0, 1] and all f ∈ X

2. ‖Atf −Asf‖ ≤ C|t− s| ‖f‖ for all t, s ∈ [0, 1] and all f ∈ X

3. A0 is an invertible operator on X, where the inverse is a bounded linear operator on X.
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Then we can conclude that also A1 is an invertible operator on X, where the inverse is a
bounded linear operator on X. This is a general method and is referred to as the method of
continuity. The idea here is that A1 is a perturbation of the “nice” invertible operator A0,
where the perturbation is controlled by conditions 1 and 2 above. The proof of the statement,
essentially that A1 is surjective, is given below.

Before we proceed let us make a clarification concerning the use of different notions.

When we talk about an operator A we do not a priori assume that A is linear (even if it is a
mapping between two vector spaces) though it is in most applications.

What do we mean by an “inverse operator”? If we consider A as a mapping X → Y it is
enough for A to be injective, i.e. A(x) = A(y) implies x = y, for A−1 to be defined as a
mapping R(A) → X. Here R(A) = {y ∈ Y : y = A(x) for some x ∈ X} is a subset of
Y . The injectivity implies that the equation (21) has at most one solution, viz. if g ∈ R(A)
there exists a unique solution otherwise there is no solution. Moreover if A is surjective, i.e.
R(A) = Y , then the equation has a unique solution f for every g ∈ Y . So if we consider A
in the category of mappings we say that A−1, called the inverse mapping to A, exists if the
equation (21) has a unique solution for every RHS, i.e. A−1(f) = g.

However if X and Y are normed spaces and A is a bounded linear mapping we could look for
a mapping B such that

AB = IR(A), BA = IX

with the additional properties to be linear (which actually is automatic, check it!) and
bounded. Hence if we view A in the category of bounded linear operators we call a bounded
linear mapping B satisfying the conditions above the inverse operator to A. Also in this
case we could have that A is surjective, i.e. R(A) = Y . In particular this is natural to as-
sume in the case X = Y if we view the operator A as an element in B(X,X) where X is a
Banach space. We observe that the space B(X,X), for short denoted by B(X), is not just a
Banach space but also a Banach algebra, i.e. there is a multiplication defined in B(X) given
by composition of operators

ST (x) = S(Tx)

which satisfies the norm inequality

‖ST‖ ≤ ‖S‖‖T‖.

The inverse operator for A, provided A is surjective, is the inverse element to A in the Banach
algebra B(X).

In connection with the Neumann series technique let us consider the following example. Set

X = Y = P([0, 1])

and
Ap(x) = (1− x

2
)p(x), x ∈ [0, 1].

Moreover assume that X and Y are equipped with the L2–norm. This means that the normed
spaces (X, ‖ · ‖2) and (Y, ‖ · ‖2) are not Banach spaces. If we complete the normed space we
obtain the Banach space L2([0, 1]). The question is whether A is invertible or not? First we
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note that A is injective, i.e. Ap = Aq implies p = q. This is straight-forward since Ap = Aq
in Y means that Ap(x) = Aq(x) for all x ∈ [0, 1] and hence p(x) = q(x) for all x ∈ [0, 1], i.e.
p = q in X. But A is not surjective since R(A) consists of all restrictions of polynomials with
a zero at x = 2 to the interval [0, 1]. This shows that A : X → R(A) has an inverse mapping.
Moreover we note that A is a bounded linear mapping from x into Y with the operator norm
given by

‖A‖ = sup
p∈P([0,1])

‖p‖2=1

(

∫ 1

0
|(1− x

2
) p(x)|2 dx)

1
2 = 1.

Prove this! A question is now if A has an inverse operator. Since A is given as a multiplication
mapping it is clear that the inverse mapping also is given by a multiplication mapping where
the multiplier is 2

2−x . We obtain A−1 : R(A) → P([0, 1]) as a bounded linear mapping with
the operator norm

‖A−1‖ = sup
p∈R(A)

‖p‖2=1

(

∫ 1

0
|( 2

2− x
) p(x)|2 dx)

1
2 = 2.

Prove also this!

If we extend A to all of L2([0, 1]), call this extension Ã, which can be done uniquely since the
polynomials in P([0, 1]) are dense in L2([0, 1]) and A is a bounded linear operator on P([0, 1]),
we observe that ‖I − Ã‖ < 1, where ‖ · ‖ denote the operator norm on L2([0, 1]), since∫ 1

0
|x
2
f(x)|2 dx ≤ 1

4

∫ 1

0
|f(x)|2 dx,

and hence
‖(I − Ã)f‖ ≤ 1

2
‖f‖.

From this we get that the Neumann series Σ∞n=0(I − Ã)n gives an expression for the inverse
mapping to Ã, since Ã can be written as Ã = I − (I − Ã) on L2([0, 1]). It is no surprise that

Ã−1p(x) = Σ∞n=0(I − Ã)np(x) = Σ∞n=0(
x

2
)np(x) =

2

2− x
p(x).

Observe that (Ã|P([0,1]))
−1 = A−1. The Neumann series applied to an element of R(A) yields

a polynomial, but to make sure that the series converges we need to consider the series in a
Banach space and not just a normed space. Moreover we see that Ã−1 is a bounded operator
on the whole of L2([0, 1]) with the norm ‖Ã−1‖ = 2 but A−1 is not a bounded operator on
the whole of P([0, 1]) and this despite the fact

‖I −A‖X→Y ≤ ‖I − Ã‖L2→L2 < 1.

Below we present some observations that are related to the concepts inverse mapping/inverse
operator.

• We first consider mappings on vector spaces. The following holds true.

Theorem 4.1. Assume that E is a finite-dimensional vector space and that A : E → E
is a linear mapping. Then the following statements are equivalent:
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1. A is bijective

2. A is injective, i.e. N (A) = {0}
3. A is surjective, i.e. R(A) = E

Note that this is not true for infinite-dimensional vector spaces, which is shown by the
following example.

Set
E = C([0, 1])

and
Af(x) =

∫ x

0
f(t) dt, x ∈ [0, 1].

Prove that A is injective but not surjective!

• From now on we only consider linear mappings X → Y where X and Y are Banach
spaces. We know that

– A is continuous at x0 ∈ X implies that A is continuous on X

– A is continuous iff A is a bounded mapping.

It can be shown, not without some effort, that there are linear mappings A : X → X
that are not bounded, i.e. the linearity and the mapping property A(X) ⊂ X is not
enough for A to be a bounded operator. This has some relevance when returning to
the stability-question 2 in the introduction, i.e. whether the fact that A : X → Y is a
bijective bounded linear operator implies that there exists a constant C such that

‖f − f̃‖ ≤ C‖g − g̃‖,

for all g, g̃ ∈ Y where Af = g and Af̃ = g̃? The answer is given by

Theorem 4.2 (Inverse mapping theorem). Assume that A : X → Y is a bijective
bounded linear mapping from the Banach space X onto the Banach space Y . Then the
mapping A−1 exists as a bounded linear mapping from Y onto X.

The answer to the question above is yes!

The proof is based on Baire’s Theorem (see [4] section 1.4). Often the inverse mapping
theorem is given as a corollary to the open mapping theorem, that also can be proved
using Baire’s theorem. We formulate the theorem without proof.

Theorem 4.3 (Open mapping theorem). Assume that A : X → Y is a surjective
bounded linear mapping from the Banach space X onto the Banach space Y . Then A
maps open sets in X onto open sets in Y .

Recall that a mapping A : X → Y is continuous iff the set A−1(U) is open in X for
every open set U in Y .
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It has been shown, using Neumann series, that the equation Af = g is uniquely solvable if
A = I − T and ‖T‖ < 1. However this is a serious restriction. We want to solve equations
where T is not a small perturbation of the identity mapping. To do this we will, as for the
finite-dimensional case, study the equation

(λI − T )f = g

where λ is a complex parameter. In this context concepts like spectrum, resolvent and resolvent
set are introduced. A more extensive treatment can be found in the books [2], [3] and [5]. The
first two books are on the same level as the textbook.

Assume that X is a complex normed space and that T : D(T ) → X is a bounded linear
mapping with D(T ) ⊆ X. Often we have D(T ) = X.

Definition 4.1. The resolvent set for T , denoted ρ(T ), consists of all complex numbers
λ ∈ C for which (T − λI)−1 exists as an inverse operator on all of X. The mapping ρ(T ) 3
λ 7→ (λI − T )−1 is called the resolvent for T .

It follows from the definition that λ ∈ ρ(T ) implies that N (T − λI) = {0} and that
R(T − λI) = X.

Definition 4.2. The spectrum for T , denoted by σ(T ), is the set C \ ρ(T ). This set is the
union of the three mutually disjoint subsets σp(T ), σc(T ) and σr(T ). These are called the
point spectrum, the continuous spectrum and the residual spectrum respectively and
are defined by the properties

• λ ∈ σp(T ) if N (T − λI) 6= {0}. Here λ is called an eigenvalue for T and a v ∈
N (T − λI) \ {0} is called an eigenvector corresponding to the eigenvalue λ;

• λ ∈ σc(T ) if N (T − λI) = {0} and R(T − λI) is dense in X but (T − λI)−1 is not a
bounded operator;

• λ ∈ σr(T ) if N (T − λI) = {0} but R(T − λI) is not dense in X.

Examples:

1. Assume that T : X → X is a linear mapping on a finite-dimensional normed space X.
Then we have σ(T ) = σp(T ) and the spectrum consists of finitely many elements.

2. Consider the linear mapping T : l2 → l2 defined by

(x1, x2, x3, . . .) 7→ (0, x1, x2, . . .)

T is a so called right shift operator. Then we have 0 ∈ σ(T ) \ σp(T ).

From now on we assume that T is a bounded operator.

Theorem 4.4. The resolvent set is an open set.
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Proof. (a sketch) We note that

• if A : X → X is a bounded linear operator with ‖A‖ < 1 then (I − A)−1 exists as an
inverse operator on all of X and

(I −A)−1 = I +A+A2 +A3 + · · ·

(Neumann series)

• if λ0 ∈ ρ(T ) we have the formula

T − λI = (T − λ0)(I − (λ− λ0)(T − λ0I)−1).

Combining these observations we obtain the result.

In this context we give a proof for the method of continuity. Condition 1 implies that all At,
t ∈ [0, 1], are injective. Assuming that At has an inverse operator defined on all of X we can
write the operator As as

As = At(I +A−1
t (As −At)).

Hence it follows that As is invertible if ‖A−1
t (As−At)‖ < 1. But now condition 1 implies that

‖A−1
t ‖ ≤ C and condition 2 implies ‖As −At‖ ≤ C|s− t|. This yields that

‖A−1
t (As −At)‖ ≤ ‖A−1

t ‖ ‖As −At‖ < 1

provided

|s− t| < 1

C2
.

Take a finite sequence of points tn, 0 = t1 < t2 < . . . < tn < tn+1 < . . . < tN = 1, such that

max
n=1,2,...,N−1

|tn+1 − tn| <
1

C2
.

The argument above shows thatAtn+1 is invertible ifAtn is invertible and hence the invertibility
of A0 implies the invertibility of A1. (Invertibility of an operator B means that B−1 exists as
an inverse operator and B is surjective.)

Theorem 4.5. The spectrum σ(T ) belongs to the disc

{λ ∈ C : |λ| ≤ ‖T‖}

in the complex plane.

Proof. Exercise!

Theorem 4.6. The spectrum σ(T ) is non-empty.

The proof can be based on Liouville’s Theorem, well-known from courses in complex analysis,
but is omitted.
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Definition 4.3. The approximate point spectrum to T , denoted by σa(T ), consists of all
λ ∈ C for which there exists a sequence (xn)∞n=1 in X, with ‖xn‖ = 1 such that

lim
n→∞

‖(T − λI)xn‖ = 0.

The following result summarizes the important properties for the approximate point spectrum.

Theorem 4.7. Assume that T is a bounded operator on X. Then we have:

1. σa(T ) is a closed non-empty subset of σ(T );

2. σp(T )
⋃
σc(T ) ⊂ σa(T );

3. the boundary of σ(T ) is a subset of σa(T );

From now on we assume that the linear operator T is compact and that X is a Banach space.
An operator T is called compact on X if for every bounded sequence (xn)∞n=1 in X there exists
a convergent subsequence of (Txn)∞n=1 in X. Using Riesz’ Lemma (see [4] section 1.2) together
with a lot of hard work one can show the following theorem that usually is called Fredholm’s
alternative.

Theorem 4.8 (Fredholm’s alternative). Let T be a compact linear operator on a Banach space
X and let λ ∈ C \ {0}. Then one of the statements below hold true:

1. the homogeneous equation
Tx− λx = 0

has non-trivial solutions x ∈ X

2. for every y ∈ X the equation
Tx− λx = y

has a unique solution x ∈ X.

In the second case the operator (T − λI)−1 exists as a bounded operator.

Example: Consider the Volterra equation

f(x) = g(x) +

∫ x

0
K(x, y)f(y) dy 0 ≤ x ≤ 1,

where K is a continuous function for 0 ≤ x, y ≤ 1. Show that for every g ∈ C([0, 1]) there
exists a f ∈ C([0, 1]) that solves the equation. From Fredholm’s alternative with X = C([0, 1])
it is enough to show that N (T−I) = {0}, where T is the compact (show this using for instance
Arzela-Ascoli Theorem) operator

Tf(x) =

∫ x

0
K(x, y)f(y) dy
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on C([0, 1]). We will show that

f(x) =

∫ x

0
K(x, y)f(y) dy 0 ≤ x ≤ 1

implies that f = 0. Set M = max0≤x,y≤1 |K(x, y)| and

φ(x) =

∫ x

0
|f(y)| dy 0 ≤ x ≤ 1.

It follows that φ is differentiable and

φ
′
(x) = |f(x)| ≤Mφ(x) 0 ≤ x ≤ 1

and hence (φ(x)e−Mx)
′ ≤ 0 and finally

0 ≤ φ(x) ≤ φ(0)e−Mx 0 ≤ x ≤ 1.

But we have φ(0) = 0 and the desired conclusion follows.

Moreover the following result holds.

Theorem 4.9 (Riesz-Schauder Theorem). Assume that T : X → X is a compact linear
operator on a Banach space X. Then the following statements hold true:

1. σp(T ) is countable, can be finite or even empty;

2. λ = 0 is the only clustering point for the set σp(T );

3. λ is an eigenvalue if λ ∈ σ(T ) \ {0};

4. X infinite-dimensional space implies that 0 ∈ σ(T ) ;

5. For λ 6= 0 the subspaces R((T − λI)r) are closed and the subspaces N ((T − λI)r) are
finite-dimensional for r = 1, 2, 3, . . .;

6. For λ 6= 0 there exists a non-negative integer r, depending on λ, such that

X = N ((T − λ)r)
⊕
R((T − λ)r)

and
N ((T − λI)r) = N ((T − λI)r+1) = N ((T − λI)r+2) = · · ·

and
R((T − λI)r) = R((T − λI)r+1) = R((T − λI)r+2) = · · · .

Moreover if r > 0 it holds that

N (I) ⊂ N ((T − λI)1) ⊂ · · · ⊂ N ((T − λI)r)

and
R(I) ⊃ R((T − λI)1) ⊃ · · · ⊃ R((T − λI)r),

where ⊂ and ⊃ here denotes proper subset.
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7. For λ 6= 0 it holds that11

R(T − λI) = N (T ∗ − λI)⊥.

The last statement in the theorem has a meaning to us if X is a Hilbert space (the “Riesz part”
of the theorem) but it is also possible to assign a meaning to the concept adjoint operator in a
Banach space and to the “orthogonal complement” that usually is called the set of annihilators
(the “Schauder part” of the theorem is the generalisation to arbitrary Banach spaces). It should
be noted that the definition of adjoint operator on a Banach space differs slightly from the
Hilbert space case but just up to an isometry. For those who are interested we refer to [2], [3]
and [5].

If we use the last part of Riesz-Schauder’s Theorem we can make Fredholm’s alternative a bit
more precise.

Theorem 4.10 (Fredholm’s alternative). Let T be a compact linear operator on a Banach
space X and let λ 6= 0. Then it holds that Tx− λx = y has a solution iff12 y ∈ N (T ∗− λI)⊥.

Now let X = H be a Hilbert space and T a compact linear operator on H. If T is self-adjoint
we obtain the counterpart to Fredholm’s alternative that is given in the textbook [1] theorem
5.2.6, which using Hilbert space notations can be written as

R(T − I) = N (T − I)⊥.

For the case with self-adjoint compact operators on Hilbert spaces the integer r in Theorem 4.9
will be equal to 1. In connection with n×n–matrices and their eigenvalues this corresponds to
the fact that the algebraic multiplicity and the geometric multiplicity are equal for eigenvalues
to hermitian matrices.
Let us very briefly indicate the Banach space case.

For arbitrary Banach spaces X we set X∗ = B(X,C), considered as a Banach space with the norm given by the operator norm ‖ · ‖X→C.
Let T be a bounded linear mapping from the Banach space X into the Banach space Y . We define the mapping T∗ : Y ∗ → X∗ using the
relation

(T
∗
y
∗
)(x) = y

∗
(Tx) alla y ∈ Y ∗, x ∈ X.

It is easy to show that T∗ is a bounded linear mapping with ‖T∗‖Y ∗→X∗ = ‖T‖Y→X . For sets A ⊂ X and B ⊂ X∗ in a Banach space
X we set

A
⊥

= {x∗ ∈ X∗ : x
∗
(x) = 0 alla x ∈ A}

and
B
⊥

= {x ∈ X : x
∗
(x) = 0 alla x

∗ ∈ A}.

Here A⊥ and B⊥ become closed subspaces in X∗ and X respectively. We detect a difference in the definition compared to the orthogonal
complement for a set A in a Hilbert space! The following result can be proved (we recognise it for the case X = Cn,Y = Cm and T given
by a m× n–matrix).

Theorem 4.11. Assume that X and Y are Banach spaces and that T ∈ B(X, Y ). Then it holds that

R(T ) = N (T
∗
)
⊥
.

If R(T ) = R(T ) it holds that
R(T∗) = N (T )

⊥

and R(T∗) = R(T∗).

11There is a difference here compared to when X is a Hilbert space which depends on the definition of adjoint
operator. If we use our standard definition from [1] the relation should be

R(T − λI) = N (T ∗ − λI)⊥.

12If X is a Hilbert space and the usual definition for adjoint operator is used the relation should be y ∈
N (T ∗ − λI)⊥.
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For T in Theorem 4.11 it is true that if T is compact then T∗ is also compact (the converse is also true). T being compact also implies
that R(T − λI) is closed (compare [4] section 1.6). Theorem 4.11 implies that

R(T − λI) = N (T
∗ − λI)⊥

and
R(T

∗ − λI) = N (T − λI)⊥.

Finally we refer to the textbook [1] for the spectral theory for compact self-adjoint operators.
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5 Ordinary differential equations

5.1 Introduction

Let c0, . . . , cn ∈ C(I) be fixed, where I = [a, b], n ≥ 2 and

cn(x) 6= 0, for all x ∈ I.

Set
Lu = cnu

(n) + . . .+ c0u, u ∈ Cn(I).

The aim of this note is to show that the differential operator L with proper homogeneous
boundary conditions has a so called Green’s function. This means that the solution can be
written as an integral with the Green’s function appearing as the kernel function. Moreover
we show that provided the operator L is symmetric the solution has a spectral decomposition.
This follows from the spectral theorem for compact self-adjoint operators on Hilbert spaces
([1] Theorem 4.10.2).

5.2 Existence of Green’s functions

Our first result is the following fundamental existence theorem for ordinary differential equa-
tions.

Theorem 5.1. Assume t0 ∈ I and ξ = (ξ1, . . . , ξn) ∈ Cn. Then for every f ∈ C(I) there
exists a unique u ∈ Cn(I) such that Lu = f and (u(t0), u′(t0), . . . , u(n−1)(t0)) = ξ.

Proof. Set y1 = u, y2 = u′, . . . , yn = u(n−1). The equation Lu = f is equivalent to

y′1 = y2
...
y′n−1 = yn

y′n = − c0
cn
y1 − . . .− cn−1

cn
yn + 1

cn
f

or, using the vector notation y = (y1, . . . , yn),

y′ = F (t, y), t ∈ I

for a vector-valued function F . This function satisfies a so called Lipschitz condition

|F (t, y)− F (t, z)| ≤ K|y − z|, t ∈ I, y, z ∈ Rn,

for some K ∈ R. Moreover note that the condition (u(t0), u′(t0), . . . , u(n−1)(t0)) = ξ can be
written y(t0) = ξ. Picard’s existence theorem ([1] theorem 5.2.5) in vector form yields the
result.

We introduce the notation
N (L) = {u ∈ Cn(I);Lu = 0}.

Clearly N (L) is a subspace of Cn(I) since L is a linear operator.
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Corollary 5.1. dimN (L) = n.

Proof. Let t0 ∈ I be fixed and define

Tu = (u(t0), . . . , u(n−1)(t0)), u ∈ N (L).

The linear mapping T : N (L) → Cn is a bijection from the previous theorem with the range
Cn. Hence we get dimN (L) = dim Cn = n.

For arbitrary functions u1, . . . , un ∈ N (L) we define the Wronskian for u1, . . . , un by

W (t) =

∣∣∣∣∣∣∣∣∣
u1(t) u2(t) . . . un(t)
u′1(t) u′2(t) u′n(t)
...

...
...

u
(n−1)
1 (t) u

(n−1)
2 (t) u

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣ , t ∈ I.
Theorem 5.2. The following conditions are equivalent:

1. W (t) 6= 0 for all t ∈ I.

2. W (t0) 6= 0 for some t0 ∈ I.

3. u1, . . . , un is a basis for the vector space N (L).

Proof. (1) ⇒ (2): trivial.

(2) ⇒ (3): Take an u ∈ N (L). Since dimN (L) = n it is enough to show that u is a linear
combination of u1, . . . , un.

Assume that t0 ∈ I is fixed and that W (t0) 6= 0. From courses in linear algebra we know that
there exist α1, . . . , αn ∈ Cn such that

n∑
k=1

αk(uk(t0), . . . , u
(n−1)
k (t0)) = (u(t0), . . . , u(n−1)(t0)).

The function v =
∑n

1 αkuk ∈ N (L) satisfies the relation

(v(t0), . . . , v(n−1)(t0)) = (u(t0), . . . , u(n−1)(t0))

and by Theorem 5.1 we have v = u. Hence it follows that u ∈ span {u1, . . . , un}.

(3) ⇒ (1): Let t ∈ I be arbitrary. We will show that W (t) 6= 0. It is enough to show that the
columns in the determinant W (t) are linearly independent.

Assume that α1, . . . , αn ∈ Cn and that
n∑
k=1

αk(uk(t), . . . , u
(n−1)
k (t)) = (0, 0, . . . , 0).

The function v =
∑n

1 αkuk ∈ N (L) satisfies v(t) = . . . = v(n−1)(t) = 0 and is equal to the
zero function by Theorem 5.1. However from

∑n
1 αkuk = 0 it follows that α1 = . . . = αn = 0.

Hence the columns in the determinant W (t) are linearly independent.
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From now on we use the following notation:

αij , βij , i = 0, . . . , n− 1, j = 1, . . . , n

are complex numbers and

Rju =
n−1∑
i=0

[αiju
(i)(a) + βiju

(i)(b)], j = 1, . . . , n.

are boundary operators. Moreover we set

Ru = (R1u, . . . , Rnu)

CnR(I) = {u ∈ Cn(I) : Ru = 0}

and
L0u = Lu, u ∈ CnR(I).

Theorem 5.3. The following conditions are equivalent:

1. The mapping L0 : CnR(I)→ C(I) is a bijection.

2. det{Rjuk}1≤j,k≤n 6= 0 for every (alternatively for some) basis u1, . . . , un i N (L).

Proof. (1) ⇒ (2): If the determinant in (2) is zero then there are α1, . . . , αn ∈ C not all equal
to zero such that

n∑
k=1

αkRjuk = 0, j = 1, . . . , n.

The function v =
∑n

1 αkuk satisfies Lv = 0 together with Rv = 0. This yields a contradiction
since v 6= 0 and L0v = 0.

(2) ⇒ (1): Take an arbitrary f ∈ C(I). It remains to prove that the equation{
Lu = f
Ru = 0

is uniquely solvable. Set w = u − v, where v ∈ Cn(I) satisfies Lv = f (Theorem 5.1), we
obtain the equivalent equation {

Lw = 0
Rw = −Rv.

With the ansatz w =
∑n

1 αkuk the determinant condition in (2) gives the existence of a unique
solution.

Now let u1, . . . , un be a basis for the vector space N (L) and set

e(x, t) =
n∑
k=1

ak(t)uk(x)
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where a1(t), . . . , an(t) are chosen such that{
e

(k)
x (t, t) = 0, k = 0, 1, . . . , n− 2

e
(n−1)
x (t, t) = 1/cn(t).

Note that the functions a1(t), . . . , an(t) are continuous in t due to Cramer’s rule. Also observe
that for fixed t ∈ I the function u(x) = e(x, t) is the unique solution to the equation{

Lu = 0
u(t) = . . . = u(n−2)(t) = 0, u(n−1)(t) = 1/cn(t).

The function e(x, t), (x, t) ∈ I × I, is called the fundamental solution to the operator L.
This function is of interest in connection with boundary value problems that we will discuss
next.

Theorem 5.4. Let u1, . . . , un be a basis for N (L) such that

det{Rjuk}1≤j,k≤n 6= 0

and set G = L−1
0 . Then there exists a unique continuous function g(x, t), (x, t) ∈ I × I, such

that
(Gf)(x) =

∫
I
g(x, t)f(t)dt.

This is called the Green’s function g and can be constructed as follows:

1. Set ẽ(x, t) = θ(x− t)e(x, t), where θ is the Heaviside’s function and e(x, t) is the funda-
mental solution to L

2. Determine b1, . . . , bn ∈ C(I) such that the function

g(x, t) = ẽ(x, t) +
n∑
k=1

bk(t)uk(x)

satisfies
R(g(·, t)) = 0, a < t < b.

Proof. First set

ũ(x) =

∫
I
ẽ(x, t)f(t)dt,

i.e.
ũ(x) =

∫ x

a
e(x, t)f(t)dt.

Repeated differentiations yield

ũ′(x) =

∫ x

a
e′x(x, t)f(t)dt+ e(x, x)︸ ︷︷ ︸

=0

f(x)

ũ′′(x) =

∫ x

a
e′′x(x, t)f(t)dt+ e′x(x, x)︸ ︷︷ ︸

=0

f(x)

...

ũ(n−1)(x) =

∫ x

a
e(n−1)
x (x, t)f(t)dt+ e(n−2)(x, x)︸ ︷︷ ︸

=0

f(x)
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and
ũ(n)(x) =

∫ x

a
e(n)(x, t)f(t)dt+

1

cn(x)
f(x).

From this we conclude Lũ = f . The function

u(x) =

∫
I
g(x, t)f(t)dt

satisfies the equation Lu = f since

u(x) = ũ(x) +

n∑
k=1

uk(x)

∫
I
bk(t)f(t)dt.

Finally we observe that

Ru =

∫ b−

a+

R(g(·, t))︸ ︷︷ ︸
=0

f(t)dt

which proves the existence of a continuous Green´s function. To show uniqueness assume the
existence of two Green´s functions g(x, t), g̃(x, t). Then∫ b

a
(g(x, t)− g̃(x, t))f(t) dt = 0, x ∈ [a, b]

holds for all f ∈ C([a, b]) and the conclusion follows.

The function g in Theorem 5.4 is called the Green’s function for the boundary value
problem {

Lu = f
Ru = 0.

Problem 1: Determine the Green’s function for the boundary value problem{
−((1 + x)u′(x))′ = f(x), 0 ≤ x ≤ 1
u′(0) = 0, u(1) = 0.

Solution: The functions u1(x) = 1 and u2(x) = ln(1 + x) form a basis for the solutions to
the homogeneous equation −((1 + x)u′(x))′ = 0. Note that∣∣∣∣ u′1(0) u′2(0)

u1(1) u2(1)

∣∣∣∣ =

∣∣∣∣ 0 1
1 ln 2

∣∣∣∣ = −1 6= 0.

so there exists a Green’s function. The fundamental solution e(x, t) = a1(t)u1(x) +a2(t)u2(x)
is given by

e(x, t) = a1(t) + a2(t) ln(1 + x)

and the constraints e(t, t) = 0, e′x(t, t) = − 1
1+t easily yield

e(x, t) = ln(1 + t)− ln(1 + x).
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The Green’s function takes the form

g(x, t) = θ(x− t)(ln(1 + t)− ln(1 + x)) + b1(t) + b2(t) ln(1 + x)

where {
g′x(0, t) = 0
g(1, t) = 0,

for 0 < t < 1. Hence we get{
b2(t) = 0
ln(1 + t)− ln 2 + b1(t) + b2(t) ln 2 = 0

from which we obtain
b1(t) = ln

2

1 + t
, b2(t) = 0.

This finally gives

g(x, t) = θ(x− t) ln
1 + t

1 + x
+ ln

2

1 + t
.

Problem 2: Assume that λ ∈ C and f ∈ C([0, 1]). Show that the equation{
u′′(x) + u′(x) + λ|u(x)| = f(x), 0 ≤ x ≤ 1
u(0) = u(1) = 0, u ∈ C2([0, 1])

has a unique solution for |λ| < e(e− 1).

Solution: We first determine the Green’s function for the equation{
u′′ + u′ = F (x), 0 ≤ x ≤ 1
u(0) = u(1) = 0.

The functions u1(x) = 1 and u2(x) = e−x form a basis for the solutions to the homogeneous
equation u′′ + u′ = 0. With our standard notation we get

e(x, t) = 1− et−x

and

g(x, t) = θ(x− t)(1− et−x) +
et − e
e− 1

+
e− et

e− 1
e−x.

Note that

t > x⇒ g(x, t) =
et − e
e− 1

(1− e−x) ≤ 0

and

t ≤ x⇒ g(x, t) =
et − 1

e− 1
(1− e1−x) ≤ 0

which implies g ≤ 0.

For every u ∈ C([0, 1]) define

(Tu)(x) =

∫ 1

0
g(x, t)(f(t)− λ|u(t)|)dt, 0 ≤ x ≤ 1
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and observe that T maps C([0, 1]) into {u ∈ C2([0, 1]); u(0) = u(1) = 0}. The equation in
problem 2 has therefore a unique solution iff T has a unique fixed point. For u, v ∈ C([0, 1])
it holds that

|(Tu)(x)− (Tv)(x)| = |
∫ 1

0
g(x, t)(λ|v(t)| − λ|u(t)|)dt| ≤

≤ |λ|
∫ 1

0
(−g(x, t))||v(t)| − |u(t)||dt ≤ |λ|j(x)‖u− v‖∞,

where ‖ ‖∞ denotes the max-norm for C([0, 1]) and

j(x) = −
∫ 1

0
g(x, t)dt.

Since j(0) = j(1) = 0 and j′′ + j′ = −1 it follows that

j(x) =
e

e− 1
− x− e

e− 1
e−x

and

max
[0,1]

j = j

(
ln

e

e− 1

)
=

1

e− 1
+ ln

(
1− 1

e

)
≤

≤ 1

e− 1
− 1

e
=

1

e(e− 1)
.

We conclude that
‖Tu− Tv‖∞ ≤

|λ|
e(e− 1)

‖u− v‖∞

and Banach’s fixed point theorem ([2]) implies that T has a unique fixed point for |λ| < e(e−1).

5.3 Spectral theory for ordinary differential equations

The linear mapping L0 : CnR(I)→ C(I) is called symmetric if

〈L0u, v〉 = 〈u, L0v〉, all u, v ∈ CnR(I),

where the inner product is given by the inner product in L2(I)

〈f, h〉 =

∫ b

a
f(x)h(x)dx.

Provided that L0 is a bijection and g is the Green’s function for the boundary value problem{
Lu = f
Ru = 0

,

we define

(Gf)(x) =

∫ b

a
g(x, t)f(t)dt, f ∈ C(I)

and

(G̃f)(x) =

∫ b

a
g(x, t)f(t) dt, f ∈ L2(I).
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Theorem 5.5. Assume that L0 is a bijection. Then the following conditions are equivalent:

1. L0 is symmetric

2. G̃ is self-adjoint

3. g(x, t) = g(t, x), x, t ∈ I.

Proof. (1) ⇔ (2): L0 is symmetric iff

〈L0Gf,Gh〉 = 〈Gf,L0Gh〉, f, h ∈ C(I)

which is the same as
〈f,Gh〉 = 〈Gf, h〉, f, h ∈ C(I).

This is equivalent to
〈f, G̃h〉 = 〈G̃f, h〉, f, h ∈ L2(I)

since C(I) is dense in L2(I) and G̃ is a bounded linear operator on L2(I) ([1] example 4.2.4)
whose restriction to C(I) is equal to G. L0 being symmetric is thus equivalent to G̃ being
self-adjoint.

(2) ⇔ (3): We first observe that

(G̃∗f)(x) =

∫ b

a
g(t, x)f(t)dt

([1] example 4.4.6). This implies that G̃ = G̃∗ iff∫ b

a
(g(x, t)− g(t, x))f(t)dt = 0, f ∈ L2(I).

Since g is continuous this means that g(x, t)−g(t, x) = 0 for all x, t ∈ I and so g(x, t) = g(t, x)
for all x, t ∈ I.

Example 1: Consider the boundary value problem{
−u′′ = f(x)
u(0) = u(1) = 0, 0 ≤ x ≤ 1.

This means that Lu = −u′′, R1u = u(0) and R2u = u(1). The operator L0 is symmetric since

〈L0u, v〉 =

∫ 1

0
−u′′v̄dx =

[
− u′v̄

]1
0

+

∫ 1

0
u′v̄′dx = {Rv = 0} =

= 〈u′, v′〉 = 〈v′, u′〉 = {Ru = 0} = 〈L0v, u〉 = 〈u, L0v〉

for all u, v ∈ C2
R([0, 1]). This fact also follows from Theorem 5.5 by checking that L0 is a

bijection and that the Green’s function is given by

g(x, t) =

{
t(1− x), 0 ≤ t < x ≤ 1
(1− t)x, 0 ≤ x ≤ t ≤ 1.

It easily follows that g(x, t) = g(t, x). The details are left as an exercise.
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Theorem 5.6. Assume that L0 is symmetric and is a bijection. Then the following statements
are true:

1. 0 is not an eigenvalue for L0 nor for G̃.

2. f is an eigenfunction for L0 corresponding to the eigenvalue µ iff f is an eigenfunction
for G̃ corresponding to the eigenvalue 1/µ.

Proof. (1): N (L0) = {0} implies that L0 has no eigenfunction corresponding to an eigenvalue
zero.

Now assume that f ∈ N (G̃). We will show that f = 0. For this take an arbitrary φ ∈ CnR(I).
We obtain

0 =〈0, L0φ〉 = 〈G̃f, L0φ〉 = 〈f, G̃L0φ〉 =

=〈f,GL0φ〉 = 〈f, φ〉.

Since CnR(I) is dense in L2(I) we can conclude that f = 0.

(2): ⇒) From
0 6= f = G(L0f) = G(µf) = µGf = µG̃f

it follows that f is an eigenfunction to G̃ corresponding to the eigenvalue 1/µ.

⇐) We have ∫ b

a
g(x, t)f(t)dt =

1

µ
f(x) a.e. in I.

Setting

h(x) = µ

∫ b

a
g(x, t)f(t)dt, x ∈ I

it follows from Lebesgue’s dominated convergence theorem (see [3]) that h ∈ C(I). Moreover
we have h(x) = f(x) a.e. in I and

h(x) = µ

∫ b

a
g(x, t)h(t)dt, x ∈ I,

and hence we get Gh = 1
µh. This yields

h = L0(Gh) = L0

(
1

µ
h

)
=

1

µ
L0h.

Since h 6= 0 in CnR(I), h is an eigenfunction to L0 corresponding to the eigenvalue µ. Thus
h, which is equal to f in L2(I), is an eigenfunction to L0 corresponding to the eigenvalue µ.
This is the proper interpretation of the formulation in Theorem 5.6 2) and the proof of the
theorem is complete.

Theorem 5.7. Assume that L0 is symmetric and is a bijection. Moreover let (µn)∞1 denote the
eigenvalues for L0 counted with multiplicity and assume that (en)∞1 is a corresponding sequence
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of orthonormal eigenfunctions. Then (en)∞1 is an ON-basis for L2(I) and the solution to the
equation {

Lu = f
Ru = 0

,

where f ∈ C(I), is given by

u =

∞∑
1

1

µn
〈f, en〉en (in L2(I)).

Proof. The operator G̃ is compact ([1] example 4.8.4) and the Hilbert-Schmidt theorem ([1]
theorem 4.10.1) and Theorem 5.6 1) implies that (en)∞1 is a complete ON-sequence for L2(I).
(This also shows that L2(I) is a separable Hilbert space.) From

f =

∞∑
1

〈f, en〉en

in L2(I), Theorem 5.6 2) now implies that

u = Gf = G̃f =

∞∑
1

〈f, en〉G̃en =

∞∑
1

1

µn
〈f, en〉en

in L2(I).

Example 2: Consider the boundary value problem{
−u′′ = f(x)
u(0) = u(1) = 0, 0 ≤ x ≤ 1.

Example 1 shows that the corresponding operator L0 is symmetric and is a bijection. The
eigenfunctions for L0 are obtained as the non-trivial solutions to the equation{

−e′′(x) = µe(x)
e(0) = e(1) = 0, 0 ≤ x ≤ 1

and a simple calculation gives en(x) = A sinnπx, where A 6= 0 and n = 1, 2, . . .. The sequence
(
√

2 sinnπx)∞1 is therefore an ON-basis for L2([0, 1]).

Example 3: Wirtinger’s inequality states that∫ 1

0
|u′(x)|2dx ≥ π2

∫ 1

0
|u(x)|2dx

for all u ∈ C1([0, 1]) that satisfies u(0) = u(1) = 0. To show this we first let

u(x) =
∞∑
1

an
√

2 sinnπx (in L2([0, 1]))

where

an =

∫ 1

0
u(x)
√

2 sinnπxdx.
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Furthermore we have∫ 1

0
u′(x)

√
2 cosnπxdx =

[
u(x)
√

2 cosnπx
]1

0
+

+ nπ

∫ 1

0
u(x)
√

2 sinnπxdx = nπan

and using the fact that the sequence (
√

2 cosnπx)∞1 is an ON sequence, Bessel’s inequality
([1] theorem 3.4.9) yields the estimate∫ 1

0
|u′(x)|2dx ≥

∞∑
1

n2π2|an|2

where the RHS is greater than or equal to

π2
∞∑
1

|an|2 = π2

∫ 1

0
|u(x)|2dx.

This gives one proof for Wirtinger’s inequality.
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6 Exercises

This is a collection of problems that has appeared in the course. Some of them has been given
on written examinations during the last years.

6.1 Vector spaces

Key words: vector space, linear combination, linear independence, basis, dimension

1. Check if the following sets with the proposed addition ⊕ and multiplication by scalar �
defines vector spaces:

(a) E = R+ ≡ {x ∈ R : x > 0} and F = R with

x⊕ y = xy for all x, y ∈ E

and
α� x = xα for all α ∈ F, x ∈ E.

(b) E = C and F = C with

x⊕ y = x+ y for all x, y ∈ E

and
αx = (Reα)x for all α ∈ F, x ∈ E.

2. Let x be an element of a vector space and λ a scalar. Show that

(a) 0x = 0

(b) (−1)x = −x
(c) λ 6= 0 and λx = 0 implies x = 0

(d) x 6= 0 and λx = 0 implies λ = 0

3. Let E be a vector space such that there exist a basis with finitely many vectors. Show
that the dimension of E is uniquely defined.

4. Let x1, . . . , xn be a basis for a complex vector space E. Find a basis for E as a real
vector space.

5. Let x1, . . . , xn be a set of linearly dependent vectors in a complex vector space E. Is
this set linearly dependent in E if E is regarded as a real vector space?

6. Show that the functions fn(x) = enx, n = 1, 2, . . ., defined on R are linearly independent.

7. Show that the functions fn(x) = cosnx, n = 1, 2, . . ., defined on [−π, π] are linearly
independent.

8. Show that the vectors xα = (1, α, α2, α3, . . .), α ∈ (0, 1), in l1 are linearly independent.
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9. In C[−1, 1] consider the sets U and V consisting of odd and even functions in C[−1, 1]
respectively. Show that U and V are subspaces and that U

⋂
V = {0}. Show that every

f ∈ C[−1, 1] can be written in the form f = f1 + f2, where f1 ∈ U and f2 ∈ V , and
that this decomposition is unique.

10. Let E = C([0, 1]). Show that

(a) if ak, k = 1, . . . , n are n distinct points in [0, 1] then the functions

x 7→ |x− ak|, k = 1, . . . , n

are linearly independent on E,

(b) the function
(x, y) 7→ |x− y|

on [0, 1]× [0, 1] cannot be written as a finite sum

Σn
i=1vi(x)wi(y),

where vi, wi ∈ E, i = 1, . . . , n.

11. Prove that the vector space C([0, 1]) has infinite dimension.

12. Prove that the vector space C∞(R) has infinite dimension.

13. Prove that the vector spaces lp are infinite-dimensional for p ∈ [1,∞).

14. Let l0 consist of all sequences (xn)∞n=1, xn ∈ R, where at most finitely many xn:s are
different from 0. Show that l0 is a vector space with the usual addition and multiplication
with scalar operations for sequence spaces. Also give a basis for l0.

15. Let F be a subspace of a vector space E. The coset of an element x ∈ E with respect
to F is denoted by x+ F and is defined to be the set

x+ F = {x+ y : y ∈ F}.

Show that under the algebraic operations

(x+ F ) + (y + F ) = (x+ y) + F

α(x+ F ) = αx+ F

these cosets constitute the elements of a vector space. This vector space is called the
quotient space of E by F and is denoted by E/F . Its dimension is called the
codimension of F and is denoted by codimF . Now let E = R3 and F = {(0, 0, z) : z ∈
R}. Find

(a) E/F

(b) E/E

(c) E/{0}

16. Show that C([c, d]) is a subspace of C([a, b]) (in a natural way) if [c, d] ⊂ [a, b].
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17. Assume M and N are subspaces of a vector space V . When is M
⋃
N a subspace?

18. Let T : E → F be a linear mapping from the vector space E into the vector space F .
Show that N (T ) and R(T ) are vector spaces.

19. Show that linear mappings preserve linear dependence.

20. Let T be a linear bijection between two vector spaces E and F . Assume that E is
finite-dimensional. Show that also F is finite-dimensional and that dimE = dimF .

21. The convex hull Ŝ of a set S is defined as the intersection of all convex sets containing
S.

(a) Show that Ŝ is convex.

(b) If S ⊂ R and R convex, show that Ŝ ⊂ R.
(c) A convex combination of elements x1, . . . , xn of a vector space is a linear com-

bination Σaixi with ai ≥ 0 for each i and Σai = 1. If R is a convex set, show that
any convex combination of a finite number of elements of R belongs to R.

(d) Show that for any set S, Ŝ equals the set of all convex combinations of finitely
many elements of S.
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6.2 Normed spaces

Key words: norm, convergence in normed space, equivalence of norms, open/closed ball,
open/closed set, closure of set, dense subset, compact set

1. Show that in any normed space

(a) a convergent sequence has a unique limit;

(b) if xn → x and yn → y then xn + yn → x+ y;

(c) if xn → x and λn → λ (λn, λ are scalars) then λnxn → λx.

2. Let E be a normed space. Prove that

‖x‖ ≤ max(‖x− y‖, ‖x+ y‖), x, y ∈ E.

Give an example of a normed space E and an x ∈ E, such that equality occurs for a
suitable y 6= 0.

3. Let X be a vector space and let ‖x‖ and ‖x‖∗, x ∈ X, be two norms on X. Is
max(‖x‖, ‖x‖∗) a norm on X? Is min(‖x‖, ‖x‖∗) a norm on X?

4. Let x1, . . . , xn be linearly independent vectors in a normed space E. Show that there
exists a c > 0 such that

‖α1x1 + . . .+ αnxn‖ ≥ c(|α1|+ . . .+ |αn|),

for all scalars αi, 1 ≤ i ≤ n. Conclude from this that any two norms on E are equivalent,
if E is finite dimensional.

5. Show that equivalent norms define the same opens sets and Cauchy sequences.

6. Show that the norms ‖ ‖1 and ‖ ‖∞ are not equivalent in the vector space C([0, 1]) where

‖f‖1 =

∫ 1

0
|f(t)| dt

and
‖f‖∞ = max

t∈[0,1]
|f(t)|

for f ∈ C([0, 1]).

7. Given a set X. A function d : X ×X → [0,∞) is called a metric on X if d satisfies the
conditions

(a) d(x, y) = 0 iff x = y

(b) d(x, y) = d(y, x) for all x, y ∈ X
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X
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Show that if E is a vector space with norm ‖ · ‖ then

d(x, y) = ‖x− y‖ x, y ∈ E

defines a metric on E.

8. Let (X, d) be a metric space. Show that d1 given by

d1(x, y) =
d(x, y)

1 + d(x, y)
for x, y ∈ X

is a metric on X. Show that the metrics d and d1 yield the same open sets.

9. Give an example of a metric on a vector space that is not given by a norm.

10. Show that the open balls B(x, r) in a normed space are open sets. Also show that the
closed balls are closed sets.

11. A subset A of a vector space E is called convex if

αx+ (1− α)y ∈ A for all x, y ∈ A, α ∈ [0, 1].

If E is a normed space show that the closed and open unit balls B̄(0, 1) and B(0, 1) are
convex.

12. Set φ : R2 → [0,∞), where

φ(x, y) = (
√
|x|+

√
|y|)2.

Show that φ does not define a norm in R2.

13. Let U be a bounded open convex and symmetric (i.e. U = (−1)U) set in R2 containing
the origin and set

‖(x, y)‖ = inf{λ > 0 : (x, y) ∈ λU},

where λU = {(λx, λy) : (x, y) ∈ U} for λ ∈ R. Show that ‖ ‖ defines a norm on R2.
Conclude that all norms on R2 are given in this way.

14. Find a sequence (x1, x2, . . .) such that xn → 0 as n → ∞ but is not in any lp, where
1 ≤ p < ∞. Find a sequence (x1, x2, . . .) which is in lp with p > 1 but not in l1. Is
lp \ lq = ∅ if p > q?

15. Give an example of a subspace in l2 that is not closed.

16. Let 1 ≤ r < p < 2r and assume that the sequence (x1, x2, . . .) satisfies

Σ∞n=1n|xn|p <∞.

Show that (x1, x2, . . .) ∈ lr.

17. Show that
lim
j→∞

Σ∞n=1

xn
j + n

= 0

for all (x1, x2, . . .) ∈ l2.
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18. Let f(x) = sinx for 0 ≤ x ≤ 1. Find a sequence of polynomials pn(x), 0 ≤ x ≤ 1, n ∈ N
of degree n, which converges to f in C([0, 1]).

19. Show that every continuous function f on [0, 1] can be uniformly approximated by
polynomials, i.e. for each ε > 0 there is a polynomial p such that maxt∈[0,1] |f(t)−p(t)| <
ε. This statement is known as the Weierstrass approximation theorem13.

20. Show that if A is dense in B and B is dense in C then A is dense in C.

21. Prove or disprove: if A is dense in B then for any set C, A
⋂
C is dense in B

⋂
C.

22. Let E be a normed space. E is called separable if there exists a countable dense subset
in E. Show that

(a) R is separable

(b) lp is separable for p ∈ [1,∞)

(c) l∞ is not separable14

(d) C([0, 1]) is separable

23. Let E be a normed space and (xn)∞n=1 a countable dense subset in E. Given ε > 0 show
that

E \ {0} ⊂
∞⋃
n=1

B(xn, ε‖xn‖).

24. Show that every finite set is compact.

25. Show that Rn and B̄(0, 1)
⋂
{(x1, . . . , xn) : x1 < 1/2} are not compact sets using the

definition of compactness.

26. Construct a set in R2 which has finite area but is not relatively compact. Generalize to
Rn.

27. Prove that any finite-dimensional subspace of a normed linear space is closed.

28. If S is a relatively compact set, prove that its convex hull is relatively compact.

29. Let F be a subspace of a normed space E and suppose x0 ∈ E \F . Furthermore suppose
x0 possesses a nearest point in F (i.e. there is a y0 ∈ F such that ‖y − x0‖ ≥ ‖y0 − x0‖
for all y ∈ F ).

(a) Prove that there is an x1 ∈ E such that ‖x1‖ = 1 and ‖y − x1‖ ≥ 1 for all y ∈ F .
(b) In addition, suppose Span({x0}

⋃
F ) = E. Show that every x ∈ E possesses a

nearest point in F .
13Hint: One way to prove the claim is to use the so called Bernstein polynomials, more precisely set

Bnf(x) = Σnk=0

(
n
k

)
xk(1− x)n−kf(

k

n
), x ∈ [0, 1], n = 1, 2, . . .

Show that Bnf → f in C([0, 1]) as n→∞.
14Assume that it is separable and construct a function that has l∞-distance ≥ 1 to each function in the

supposed countable dense set.
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30. (Riesz lemma) Suppose E is a normed space and let F be a proper closed subspace
of E. Furthermore let ε be a given positive real number. Show that there is a vector
x1 ∈ E such that ‖x1‖ = 1 and ‖y − x1‖ > 1− ε for every y ∈ F .

31. Let E be a normed space. Show that the unit sphere {x ∈ E; ‖x‖ = 1} is compact if
and only if E is of finite dimension.

32. Let F be a closed subspace of a normed space E, where ‖ · ‖ denotes the norm. Show
that ‖ · ‖0 defines a norm on the quotient space E/F if

‖x̃‖0 = inf
x∈x̃
‖x‖.

33. Let T be a mapping on a real normed space X satisfying

T (x+ y) = T (x) + T (y) for all x, y ∈ X.

Show that
T (λx) = λT (x) for all λ ∈ R and x ∈ X

if T is continuous.

34. Let T : X → X be a mapping (not necessary linear) on a normed space X. Moreover
assume that there are real constants C,α, where α > 1, such that

‖T (x)− T (y)‖ ≤ C‖x− y‖α, for all x, y ∈ X.

Show that there exists a z ∈ X such that T (x) = z for all x ∈ X.
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6.3 Banach spaces

Key words: Cauchy sequence, complete space, Banach space, convergent/absolutely conver-
gent series, linear mapping, null space of a linear mapping, range and graph of a mapping,
continuous mapping, bounded linear mapping, completion of a normed space, Lp-spaces

1. Prove that convergence in L2([0, 1]) implies convergence in L1([0, 1]).

2. For any n ∈ Z+ set

fn(x) =

{ √
n 0 ≤ x ≤ 1

n
0 1

n < x ≤ 1.

Prove that fn → 0 in L1([0, 1]) but not in L2([0, 1]).

3. Let f ∈ L1(R). Can we conclude that f(x)→ 0 for |x| → ∞? Can we find a, b ∈ R such
that |f(x)| ≤ b for |x| ≥ a?

4. Which of the following sequences of real functions (n ∈ N)

(a) fn = 1
nχ(0,n)

(b) fn = χ(n,n+1)

(c) fn = nχ[0, 1
n

]

(d) fn = χ[j2−k,(j+1)2−k] where 0 ≤ j < 2k and n = j + 2k

converges to the 0-function

(a) uniformly on R

(b) point-wise on R

(c) almost everywhere on R

(d) in L1(R).

Which of these modes of convergence implies which others?

5. Let f ∈ Lp(R) for p ∈ [1,∞) and λ > 0. Prove the inequality

|{x ∈ R : |f(x)| > λ}| ≤ (
‖f‖p
λ

)p,

where |A| denotes the (Lebesgue) measure of the set A ⊂ R.

6. Let f ∈ C[0, 1]. Show that

‖f‖p → ‖f‖∞ for p→∞.

7. Consider the set of all rational numbers p/q ∈ (0, 1) with denominator q ≤ n; call them
rn1, rn2, . . . , rnK (where K depends on n). Define a function gn by

gn(x) = ΣK
i=1φn(x− rni),

where φn(u) = 1 − enu for |u| ≤ e−n, φn(u) = 0 for |u| > e−n. Sketch the graph of
gn. Show that gn ∈ C([0, 1]),

∫ 1
0 |gn|

2 dx → 0 as n → ∞, and and gn(x) → χQ(x) for
rational x.
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8. Show that if (xn)∞n=1 is a Cauchy sequence and has a convergent subsequence then
(xn)∞n=1 is convergent.

9. Assume that (xn)∞n=1 is a sequence in a Banach space such that for any ε > 0 there is
a convergent sequence (yn)∞n=1 such that ‖yn − xn‖ < ε for all n. Prove that (xn)∞n=1 is
convergent. Give an example to show that the statement becomes false if Banach space
is replaced by normed space.

10. Let l∞c denote the vector space with all convergent sequences (xn)∞n=1 of complex num-
bers equipped with the norm

‖(xn)∞n=1‖l∞c = sup
n
|xn|.

Show that the space l∞c is complete.

11. Consider the vector space l1 and set ‖x‖∗ = 2|Σ∞n=1xn| + Σ∞n=2(1 + 1
n)|xn| for x =

(x1, x2, . . . , xn, . . .) ∈ l1. Show that ‖x‖∗ defines a norm on l1 and that the vector space
l1 is a Banach space with this norm. Is this norm equivalent to the standard norm ‖x‖l1?

12. Define C1
2 ([0, 1]) to be the space of continuously differentiable functions on [0, 1], with

norm ‖f‖ = (
∫ 1

0 (|f |2 + |f ′|2) dx)1/2. Show that this is a proper definition of norm. Is
this normed space complete?

13. What conditions must the function r satisfy in order that

‖f‖ = sup{|f(x)r(x)| : 0 ≤ x ≤ 1}

should define a norm on the vector space C([0, 1])?

14. Let BC([0,∞)) be the set of functions continuous for x ≥ 0 and bounded. Show that
for each a > 0, ‖f‖a = (

∫∞
0 e−ax|f(x)|2 dx)1/2 defines a norm on BC([0,∞)), and ‖ · ‖a

is not equivalent to ‖ · ‖b if 0 < b < a. What about the case a = 0?

15. Show that every finite-dimensional normed space is complete.

16. Set fk(x) =
sin kx

k2
, 0 ≤ x ≤ 1, k ∈ Z+. Prove that the series Σ∞k=1fk converges in C([0, 1]).

17. Set for any n ∈ Z+, fn(x) = xn− xn+1 and gn(x) = xn− x2n if 0 ≤ x ≤ 1. Is any of the
sequences (fn)∞n=1 and (gn)∞n=1 convergent in C([0, 1])?

18. Let M = {x ∈ C([0, 1]) : x(2−n) = 0 all n ∈ Z+}. Prove that M is a closed subset of
C([0, 1]).

19. Let M = {(xn)∞n=1 ∈ c0 : Σ∞n=12−nxn = 0} ⊂ c0 ≡ {(xn)∞n=1 ∈ l∞ : limn→∞ xn = 0}.
Show that M is a closed subspace in c0.

20. Let E denote a normed space of finite dimension and let e1, . . . , en be a basis of E. Set

f(x) = Σn
k=1xkek, x = (x1, . . . , xk) ∈ Rn.

Show that f is continuous. Conclude from this that any two norms on E are equivalent.
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21. Let E be a normed space and assume that E 6= {0}. Prove that there do not exist
bounded linear operators A and B on E such that AB −BA = I.

22. Set (Ax)(t) = x′(t) and (Bx)(t) = tx(t), 0 < t < 1, for x ∈ C∞(]0, 1[). Prove that
AB − BA = I. Is it possible to find a norm on C∞(]0, 1[) such that A and B are
bounded operators with respect to this norm15?

23. Let E and F be normed spaces and T : E → F a continuous mapping. Show that the
T (A) is compact in F if A is a compact set in E.

24. Let T : E → R be a continuous mapping from a normed space E. Moreover let A be a
compact set in E. Show that T attains its maximum and minimum on A.

25. Let A : X → X be a continuous mapping and assume Ax 6= 0 for all x ∈ X. Show that
the mapping B : x 7→ Ax/‖Ax‖ is continuous on X.

26. Find the norm of the linear functional

(x, y) 7→ x− 7y

on R2 with respect to the norms lp for p = 1, 2 and ∞.

27. For what values of the constant a does

u 7→
∫ 1

0
xau(x) dx

define a mapping C([0, 1]) → C? For what values of a does it define a mapping
L2([0, 1])→ C?

28. Show that the equation{
(Af)(x) =

∫ +∞
−∞ f(y)e−|x−y| dy, x ∈ R

f ∈ L2(R)

defines a bounded linear operator A on L2(R).

29. Prove that any linear mapping from a finite-dimensional vector space into an arbitrary
vector space must be continuous.

30. Let E be a normed space and L a linear functional on E. Furthermore, suppose there is
a unit vector x0 ∈ E such that ‖x0−y‖ ≥ 1 for every y ∈ N (L). Prove that |Lx0| = ‖L‖.

31. Find all linear mappings of Cn into Cm for n,m ∈ Z+.

32. Let A,B be two linear operators defined on a vector space E. Show that E must be
infinite-dimensional if

AB = I 6= BA,

where I denotes the identity mapping on E. Give an example of such operators A and
B on a vector space E.

15Hint: Show that AnB −BAn = nAn−1 for n = 1, 2, . . .
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33. Let E be a vector space and f : E → R a linear mapping. Suppose x0 ∈ E and f(x0) 6= 0.
Prove that any x ∈ E may be written as x = y+αx0, where α is a scalar and y ∈ N (f).
Show that this representation is unique.

34. Let f and g be two functionals on a vector space such that N (g) ⊂ N (f). Prove that
f = αg, where α is a scalar.

35. Show that for any linear operator A on a n-dimensional vector space E, there are scalars
α0, . . . , αn2 , not all of them zero, such that

Σn2

k=0αkA
k

is the zero operator.

36. Let B and C be linear operators on a finite-dimensional vector space E and suppose
N (B) ⊂ N (C). Show that there is a linear operator A on E such that C = AB.

37. Let E be a vector space of finite dimension and suppose A : E → E is a linear operator.
Prove that N (A) = {0} if and only if R(A) = E. Show that this is not true for vector
spaces of infinite dimension.

38. Let E be a real normed space and let T : E → R be a linear functional. Assume that
N (T ) 6= E. Show that for all x ∈ E

inf
y∈N (T )

‖x− y‖ =
|Tx|
‖T‖

.

39. Show that the operator T on C([0, 1]), where

(Tf)(t) = tf(t), t ∈ [0, 1],

is a bounded linear operator on C([0, 1]).

40. Let An, A,Bn, B be bounded linear operators on a Banach space X. Show that An → A
and Bn → B in B(X,X) implies AnBn → AB in B(X,X).

41. Let A : X → X be a bounded linear operator on a Banach space X. Show that
Σ∞n=0

1
n!A

n converges in B(X,X). Denote its sum by eA. Show that for any integer
n > 0, (eA)n = enA. Show that eO = I where O is the zero operator. Show that
eA is always invertible (even if A is not) and its inverse operator is e−A. Show that if
AB = BA, then eA+B = eAeB. Show that eA+B = eAeB is not true in general.

42. Let A,B be invertible bounded linear operators on a Banach space X with ‖B−1‖‖A−
B‖ < 1. Show that if {

Ax = b
By = b

then

‖x− y‖ ≤ ‖B−1‖‖A−B‖
1− ‖B−1‖‖A−B‖

‖y‖.

Moreover also show that

‖x− y‖ ≤ ‖B−1‖2‖A−B‖
1− ‖B−1‖‖A−B‖

‖b‖.
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43. Let T be a bounded linear operator from a normed space E onto a normed space F .
Assume that there is a constant C > 0 such that

‖Tx‖ ≥ C‖x‖

for all x ∈ E. Show that the inverse operator T−1 : F → E exists as a mapping and is
a bounded linear operator.

44. Let T : C([0, 1])→ C([0, 1]) be defined by

(Tf)(t) =

∫ t

0
f(s) ds.

Find R(T ) and T−1 : R(T ) → C([0, 1]) satisfying T−1T = IC([0,1]). Is T−1 linear and
bounded?

45. The operator A : C([0, 1])→ C([0, 1]) is defined by the equation

(Af)(t) = f(t) +

∫ t

0
f(s) ds 0 ≤ t ≤ 1.

Prove that N (A) = {0} and R(A) = C([0, 1]). Finally determine the inverse A−1 of A
and show that A−1 is a bounded operator.

46. Let A be an r × n-matrix with real entries. Consider A as a linear mapping from Rn

into Rr. Calculate or give an upper bound for the operator norm of A in

(a) B(l1, l1)

(b) B(l∞, l∞)

47. Let F be a subspace of a vector space E and let f be a functional on E such that f(F )
is not the whole scalar field of E. Show that f(x) = 0 for all x ∈ F .

48. Let k ∈ Z+ and set Lk(f) =
∫ π

0 f(t) sin kt dt for all f ∈ C([0, π]). Prove that ‖Lk‖ = 2
for all k.

49. Let

Lf =

∫ 1/2

0
f(t) dt−

∫ 1

1/2
f(t) dt, f ∈ C([0, 1]).

Prove that ‖L‖ = 1. Prove that there does not exist any f ∈ C([0, 1]) such that ‖f‖ = 1
and |Lf | = 1.

50. Let E be a normed space and A : E → C a bounded linear functional. Suppose there
exists a vector x0 ∈ E such that ‖x0‖ = 1 and ‖x0 − x‖ ≥ 1 for all x ∈ N (A). Show
that |Ax0| = ‖A‖. Moreover, let F = {x ∈ C([0, 1]) :

∫ 1/2
0 x(t) dt =

∫ 1
1/2 x(t) dt}. Show

that if x0 ∈ C([0, 1]) and ‖x− x0‖ ≥ 1 for all x ∈ F then ‖x0‖ > 1.

51. Show that

L(f) =

∫ 1

0

1√
x
f(x) dx

defines a bounded linear functional on C([0, 1]).
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52. Show that

L(f) =

∫ 1

0

1
3
√
x
f(x) dx

defines a bounded linear functional on L2([0, 1]).

53. Let T be defined by T (x) = (x2, x3, . . . , xn+1, . . .) for all x = (x1, x2, . . . , xn, . . .) ∈ l2.
Show that T ∈ B(l2, l2) and calculate ‖T‖.

54. Let f(x) be a complex-valued function on R+ = {x : x > 0} and let Lf be the function
defined on R+ by

Lf(x) =

∫ ∞
0

f(y)e−xy dy.

Show that L is a bounded16 linear mapping L2(R+) → L2(R+) with ‖L‖ ≤
√
π. Show

that L is not a bounded17 linear mapping Lp(R+)→ Lp(R+) for p 6= 2.

55. (Non-orthogonal projections) A bounded linear operator P on a Banach space X will
be called a projector18 if P 2 = P .

(a) Show that I −P is a projector if P is. Show that if x ∈ R(P ) then Px = x, and if
x ∈ R(I − P ) then Px = 0.

(b) Show that for any projector P on a Banach space X, the range R(P ) of P is a
closed subspace, and is therefore itself a Banach space.

(c) Show that any x ∈ X can be uniquely expressed in the form x = u + v with
u ∈ R(P ) and v ∈ R(I − P ).

56. Let T be a linear mapping from a normed space V into a normed space W . Show that
the range R(T ) is a subspace of W . Show that the null-space (or kernel) N (T ) is a
subspace of V . If T is bounded, is it true that T (V ) and/or N (T ) is closed?

57. Show that if (x
(n)
1 , x

(n)
2 , . . .) → (x1, x2, . . .) in lp, then x(n)

k → xk in R for all k ∈ N. If
x

(n)
k → xk in R for all k ∈ N, is it true that (x

(n)
1 , x

(n)
2 , . . .)→ (x1, x2, . . .) in lp?

58. Let T be the linear mapping from C∞(R) into itself given by Tf = f ′. Show that T is
surjective. Is T injective?

59. Consider the mapping T from C[0, 1] into itself, given by

Tf(t) =

∫ t

0
f(s) ds.

We assume that C[0, 1] is equipped with the sup-norm. Show that T is bounded and
find ‖T‖. Show that T is injective and find T−1 : T (C[0, 1])→ C[0, 1]. Is T−1 bounded?

16Hint: write f(y)e−yx = (f(y)e−yx/2y1/4)(e−yx/2y−1/4) and use Hölder’s inequality.
17Hint: Try f(x) = e−ax
18Compare projections that are self-adjoint and satisfies P 2 = P . By projection we mean orthogonal

projection.
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60. Let T be a linear operator T : L2(R)→ L2(R) satisfying that f ≥ 0 implies that Tf ≥ 0.
Show that

‖T (|f |)‖ ≥ ‖Tf‖

for all f ∈ L2(R). Show that T is bounded.

61. Define, for h ∈ R, the operator τh on L2(R) by

τhf(x) = f(x− h).

Show that τh is bounded.

62. Let V be a Banach space and let T ∈ B(V, V ) such that T−1 exists and belongs to
B(V, V ). Show that if ‖T‖ ≤ 1 and ‖T−1‖ ≤ 1, then

‖T‖ = ‖T−1‖ = 1,

and ‖Tf‖ = ‖f‖ for all f ∈ V .

63. Consider the operator

Af(x) =
1√
π

∫ x

0

f(t)√
x− t

dt, x ∈ [0, 1]

whenever this expression makes sense. Show that Af ∈ L∞[0, 1] if f ∈ Lp[0, 1], p > 2.
Find the operator B = A2, i.e. find the kernel k(x, t) such that

Bf(x) =

∫ x

0
k(x, t)f(t) dt

for f ∈ Lp[0, 1], p > 2. Show that B : Lp[0, 1]→ L∞[0, 1], 1 ≤ p ≤ ∞ is bounded. Solve
the equation

(I −A)f(x) = 1

formally by a Neumann series, and express f as

f(x) = g(x) +Ah(x)

where g and h are known functions. Insert and show that this formal solution is a
solution.
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6.4 Fixed point techniques

Key words: contractions, Banach’s fixed point theorem, Brouwer’s fixed point theorem, Schauder’s
fixed point theorem

1. Show that the Banach fixed point theorem is valid for metric spaces (X, d) as follows:
Let (X, d) be a complete19 metric space and let F be a closed set in X. Assume that
T : F → F is a contraction mapping on F . Then T has a unique fixed point.

2. Consider the metric space (X, d), where X = [1,∞) and d the usual distance. Let
T : X → X be given by

T (x) =
x

2
+

1

x
.

Show that T is a contraction and find the minimal contraction constant. Find also the
fixed point.

3. Let T be a mapping from a metric space (X, d) into itself such that

d(T (x), T (y)) < d(x, y)

for all x, y ∈ X, x 6= y. Show that T has at most one fixed point. Show20 that T not
necessarily have a fixed point.

4. A mapping T : R→ R satisfies a Lipschitz-condition with constant k if

|T (x)− T (y)| ≤ k|x− y|

for all x, y ∈ R.

(a) Is T a contraction?

(b) If T is a C1–function with bounded derivative, show that T satisfies a Lipschitz-
condition.

(c) If T satisfies a Lipschitz-condition, is T then a C1-function with bounded deriva-
tive?

(d) Assume that |T (x)−T (y)| ≤ k|x− y|α for some α > 1. Show that T is a constant.

5. Let X be a Banach space and let T, S be two mappings from X into X (not necessarily
linear). Assume that TS = ST and that T has a unique fixed point. Show that S has
a fixed point. What can be said if T has more than one fixed point?

6. Let F be a compact set in a normed space X and let T : F → F have the property

‖T (x)− T (y)‖ < ‖x− y‖, all x 6= y ∈ F.

Show that T has a unique fixed point.
19see footnote to Baire’s theorem below
20Hint: e.g. consider T (x) = x+ 1

x
for x ∈ [1,∞).
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7. Let X be a Banach space and T a mapping on X satisfying

‖T (x)− T (y)‖ ≥ K‖x− y‖ all x, y ∈ X,

where K > 1. Assume that T (X) = X. Show that T has a unique fixed point.

8. We consider the vector space Rn with l1-norm and a mapping T : Rn → Rn given by
Tx = Cx + b, where C = (cij) is an n × n-matrix and b ∈ Rn. Show that T is a
contraction if

Σn
i=1|cij | < 1 for all j = 1, 2, . . . , n.

If we instead use the l2-norm, show that T is a contraction if

Σn
i=1Σn

j=1|cij |2 < 1.

9. Use Banach fixed point theorem to find a root (given to four decimal places) of the
equation

x2 − sin2 x− 1 = 0

in the interval [1,
√

2].

10. Suppose 0 < L <
√

(
√

5− 1)/2. Show that there exists a unique u ∈ C([0, 1]) such that

u(x) =

∫ L

0

√
1 + (x− y)2 cos(u(y)) dy + sin(e−x), 0 ≤ x ≤ L.

11. Show that the equation

u(x) =

∫ p

0

√
1 + (x− y)2 cosu(y) dy + sin(πe−4x2

)

has a unique solution in C([0, p]) for p > 0 small enough. Give an upper estimate on p?

12. Suppose λ ∈ C. Solve the equation{
u(x)− λ

∫ 1
0 xyu(y) dy = f(x) 0 ≤ x ≤ 1

u ∈ C([0, 1])

where f ∈ C([0, 1]) is a given function.

13. Suppose λ ∈ C. Solve the equation{
u(x)− λ

∫ x
0 xyu(y) dy = f(x) 0 ≤ x ≤ 1

u ∈ C([0, 1])

where f ∈ C([0, 1]) is a given function.

14. Suppose f ∈ C([0, 1]). Prove that the following equation possesses a unique solution
where {

u(x)− 5
∫ 1−x

0 u(y) min(x, y) dy = f(x) 0 ≤ x ≤ 1
u ∈ C([0, 1]).
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15. Let P be the set of all ordered pairs f = (f1, f2) of real-valued continuous functions on
[0, 1]. Show that P is a Banach space if we define addition and scalar multiplication
in the obvious way, and define ‖f‖P = max{‖f1‖∞, ‖f2‖∞}. Show that the coupled
integral equations 

u(x) = λ
∫ 1

0 e
xy u(y)

1+u2(y)+v2(y)
dy

v(x) = µ
∫ 1

0 e
xy u(y)v(y)

1+u2(y)+v2(y)
dy

have no nontrivial solutions if |λ| < 1/2e and |µ| < 1/e.

16. Consider the equation21

3u(x) = x+ (u(x))2 +

∫ 1

0
|x− u(y)|1/2 dy.

Show that it has a continuous solution u satisfying 0 ≤ u(x) ≤ 1 for 0 ≤ x ≤ 1.

17. Let S be the set {f ∈ C([0, 1]) : ‖f‖∞ ≤ 1, f(0) = 0, f(1) = 1} and the operator
T : S → S defined by (Tf)(x) = f(x2). Show that S is a closed bounded convex set
and that T is a continuous operator with no fixed point.

18. Let c0 denote the vector space

c0 = {(xn)∞n=1 ∈ l∞ : lim
n→∞

xn = 0}

with the norm
‖(xn)∞n=1‖c0 = max

n
|xn|.

Define T : c0 → c0 by T ((xn)∞n=1) = (zn)∞n=1, where{
z1 = 1

2(1 + ‖(xn)∞n=1‖)
zn = (1− 2−n)xn−1, n ≥ 2

Show that T maps the closed unit ball in c0 into itself and that

‖T (x)− T (y)‖ < ‖x− y‖

for all x, y, x 6= y, in the unit ball in c0. Moreover, show that T have no fixed points in
the unit ball in c0.

19. Let T denote the mapping (x, y) 7→ (x + y, y − (x + y)3) on R2. Show that T is an
odd mapping, i.e. T (−x,−y) = −T (x, y), and that (0, 0) is the only fixed point of T .
Moreover show that (2,−4) and (−2, 4) are fixed points of T 2. Can T be a contraction?

20. T denote the mapping (x, y) 7→ (y1/3, x1/3) on R2. What are the fixed points of T? What
happens when you iterate, starting from various places in R2 (find out by numerical
experiments)? In what regions is T a contraction?

21Hint: Krasnoselskii’s fixed point theorem
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21. Let T be a contraction on a Banach space E, i.e.

‖Tx− Ty‖ ≤ α‖x− y‖

for all x, y ∈ E for some α ∈ (0, 1), and assume that S is a mapping on E such that
‖Tx− Sx‖ ≤ λ for all x ∈ E for some constant λ > 0. Show that

‖Tnx− Snx‖ ≤ λ1− αn

1− α

for n ∈ Z+. Show that if S has a fixed point y then

‖x− y‖ ≤ λ 1

1− α
,

where x is the unique fixed point for T . Finally show that if yn = Sny0 then

‖x− yn‖ ≤
1

1− α
(λ+ αn‖y0 − Sy0‖),

provided x is the fixed point for T . What is the significance of this formula in applica-
tions?

22. Consider the equation

x(t)− µ
∫ 1

0
k(t, s)x(s) ds = v(t), t ∈ [0, 1], (21)

where k ∈ C([0, 1]× [0, 1]) and v ∈ C([0, 1]). Moreover assume that

max
(t,s)∈[0,1]×[0,1]

|k(t, s)| ≤ c.

Show that (21) has a unique solution x ∈ C([0, 1]) provided |µ|c < 1 using the iterative
sequence

xn+1(t) = v(t) + µ

∫ 1

0
k(t, s)xn(s) ds. (22)

Next set

Sx(t) =

∫ 1

0
k(t, s)x(s) ds

and
zn+1 = µSzn.

Choosing x0 = v show that (22) yields the so called Neumann series

x = lim
n→∞

xn = v + µSv + µ2S2v + µ3S3v + . . .

Show that in the Neumann series we can write

Snv(t) =

∫ 1

0
k(n)(t, s)v(s) ds, n = 1, 2, 3, . . .
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where the so called iterated kernel k(n) is given by

k(n)(t, s) =

∫ 1

0
· · ·
∫ 1

0
k(t, t1)k(t1, t2) · · · k(tn−1, s) dt1 · · · dtn−1.

Show that the solution of (21) can be written

x(t) = v(t) + µ

∫ 1

0
k̃(t, s, µ)v(s) ds

where
k̃(t, s, µ) = Σ∞j=0µ

jk(j+1)(t, s).

23. Use the methods in the above problem to solve

x(t)− µ
∫ 1

0
cx(s) ds = v(t), t ∈ [0, 1]

where c is a constant.

24. (a) A nonlinear version of the Volterra operator is defined as follows: (Lu)(x) =∫ x
0 K(x, y)f(y, u(y)) dy where K and f are continuous functions, and |f(y, u) −
f(x, v)| ≤ N |u− v| for all u, v, x, y where N is a constant. Then L maps C([0, T ])
into itself for any T > 0. Give an example to show that L is not a contraction on
C([0, T ]) with the usual norm ‖u‖ = sup |u(x)|.

(b) Show that for any a > 0, ‖u‖a = sup{e−ax|u(x)| : 0 ≤ x ≤ T} defines a norm on
C([0, T ]) which is equivalent to the usual norm. Deduce that C([0, T ]) with the
norm ‖ · ‖a is a Banach space.

(c) Set M = max{|K(x, y)| : 0 ≤ x, y ≤ T}. Show that ‖Lu − Lv‖a ≤ MN/a(1 −
e−aT )‖u − v‖a for all u, v ∈ C([0, T ]). Deduce that for any T > 0 the integral
equation u = Lu+g, where g is a given continuous function, has a unique solution.

25. Let f : R → R be a C1-mapping and assume that |f ′(x)| ≤ c < 1 for all x ∈ R. Show
that g : R→ R is surjective , where g(x) = x+ f(x).

26. Let X and Y be Banach spaces and let T : X → Y be a mapping having the following
property: There exists a number C > 0 such that for any x, y ∈ X we have

|T (x+ y)− T (x)− T (y)| ≤ C.

(a) Show that there exists a unique additive22mapping23 S : X → Y such that T − S
is bounded in the sup-norm.

(b) If T is continuous, prove that S is continuous and linear.
22S additive means that

S(x+ y) = S(x) + S(y)

for all x, y ∈ X.
23Hint: Show that S(x) = limn→∞

1
2n T (2nx) does the job.
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27. (Newton’s iteration) Let f be a real C2-function on an interval [a, b], and let ξ ∈ (a, b)
be a simple zero of f . Show that Newton’s method

xn+1 = T (xn) ≡ xn −
f(xn)

f ′(xn)

is a contraction in some neighborhood of ξ.

28. (Halley’s iteration) In 1694 Edmund Halley, well-known for first computing the orbit of
the Halley comet, presented the following algorithm for computing roots of a polynomial.
Show that if f is a real C3-function on an interval [a, b], and if ξ ∈ (a, b) is a simple zero
of f then the algorithm

xn+1 = T (xn) ≡ xn −
f(xn)

f ′(xn)− f ′′(xn)f(xn)
f ′(xn)

is a contraction in some neighborhood of ξ.

29. For each of the following sets give an example of a continuous mapping of the set into
itself that has no fixed points:

(a) the real line R

(b) the interval (0, 1]

(c) the set [0, 1]
⋃

[2, 3]

30. Give an example of a mapping of the closed interval [0, 1] into itself that has no fixed
points (and hence is not continuous).

31. Let f : S1 → R be a continuous function, where S1 denotes the unit circle centered at
the origin. Show that there is an x ∈ S1 such that f(x) = f(−x). This result is called
the Borsuk-Ulam theorem for the circle.

32. Let A and B be two bounded plane figures. Show that there is a line dividing each into
two parts of equal area.

33. Let K be a closed disc in the plane R2 and let C be its boundary circle. Assume that
the function f is a continuous mapping K → R2 such that f |C = I and that g is a
continuous mapping K → K. Show that there is a point p ∈ K such that f(p) = g(p).

34. Prove Baire’s theorem [ Let X be a complete24 metric space.

(a) If {Un}∞n=1 is a sequence of open dense subsets of X, then
⋂∞
n=1 Un is dense in X.

(b) X is not a countable union of nowhere dense sets.]
24For the definition of a metric space X with metric d see exercise 6 in the section ”normed spaces”. We say

that a set A ⊂ X is open if for each x ∈ A there is an r > 0 such that {y ∈ X : d(x, y) < r} ⊂ A. A set
B ⊂ X is closed if its complement Bc is an open set. Given a subset E of X. The intersection of all closed
sets in X containing E is a closed set, is called the closure of E and is denoted E. The union of all open sets
in X contained in E is an open set, is called the interior of E and is denoted by E0. We say that a set E in
X is dense in X if E = X and we say that E is nowhere dense if (E)0 = ∅. Finally, a metric space is called
complete if for each sequence {xn} ⊂ X such that d(xn, xm) → 0 as n,m → ∞ there exists an x such that
d(xn, x)→ 0 as n→∞.
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35. Use Baire’s theorem to show the existence of f ∈ C([0, 1]) that is nowhere differen-
tiable. [Hint: Consider the sets En of all f ∈ C([0, 1]) for which there exists x0 ∈ [0, 1]
(depending on f) such that

|f(x)− f(x0)| ≤ n|x− x0|

for all x ∈ [0, 1]. Show that En is nowhere dense in C([0, 1]).]

36. Prove Banach-Steinhaus theorem [Suppose X is a Banach space and Y is a normed
space and that A ⊂ B(X,Y ). Moreover assume that

sup
T∈A
‖Tx‖ <∞ for all x ∈ X.

Then
sup
T∈A
‖T‖ <∞.]

37. Use Banach-Steinhaus theorem25 to show the existence of a continuous function on
[−π, π] such that its Fourier series diverges at 0.

38. Prove Perron’s theorem, i.e. prove that an n × n-matrix, whose elements are all
positive, has at least one positive eigenvalue and that the elements of the corresponding
eigenvector are all positive.

39. A linear integral operator with a positive kernel is a natural analogue of the positive
matrix in Perron’s theorem. Use Schauder’s theorem to prove that an integral operator
with positive continuous kernel has a positive eigenvalue.

40. Let T : B̄(0, 1) → B̄(0, 1) where B̄(0, 1) is the closed unit ball in Rn centered at the
origin. Assume that

|T (x)− T (y)| ≤ |x− y|

for all x, y ∈ B̄(0, 1) where | · | denotes the Euclidean distance. Show that T has a fixed
point using

(a) Brouwder’s fixed point theorem

(b) Banach’s contraction theorem26

41. Prove Arzela-Ascoli’s theorem [Let A ⊂ C([0, 1]). It follows that that A is compact
if and only if

(a) (uniform boundedness) there exists an M <∞ such that

sup
x∈[0,1], f∈A

|f(x)| ≤M

and
25Hint: Let Tnf denote the n–th partial sum of the Fourier series of f .
26Hint: Consider Tn = (1− 1

n
)T .
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(b) (equicontinuity) for all ε > 0 there exists a δ > 0 such that

|f(x)− f(y)| < ε

for all x, y ∈ [0, 1] with |x− y| < δ and all f ∈ A.]

42. Let M be a bounded set in C([0, 1],not necessarily compact. Show that the set of all
functions F (x) =

∫ x
0 f(t) dt with f ∈M is relatively compact.

43. Prove Sperner’s lemma [Let ∆ be a closed triangle with vertices v1, v2, v3 and let τ be
a triangulation of ∆. This means that τ = {∆i}i∈I where ∆i are closed triangles with
the properties

(a) ∆ =
⋃
i∈I ∆i

(b) For every i, j ∈ I, i 6= j, we have

∆i

⋂
∆j =


∅ or
common vertex or
common side

Moreover let V denote the set of all vertices of the triangles ∆i and let c : V → {1, 2, 3}
be a function that satisfies the following conditions:

(a) c(vi) = i for i = 1, 2, 3

(b) v ∈ V
⋂
vivj ∈ {i, j} for i, j ∈ {1, 2, 3} where vivj denotes the line segment between

vi and vj .

Then there exists a triangle ∆i such that the vertices of the triangle take different values.]

44. Prove Brouwer’s fixed point theorem in a special case27 (n=2): Let T : K → K be
a continuous mapping where K denotes the set {(x1, x2, x3) ∈ R3 : Σ3

i=1xi = 1, xi ≥
0 all i}. Then T has a fixed point.

45. Let (an)∞n=1 be a bounded sequence, i.e. (an)∞n=1 ∈ l∞. Show, by using Banach’s fixed
point theorem28, that there exists a bounded sequence (xn)∞n=1 that solves the equations

xn−1 + 4xn + xn+1 = an, n = 1, 2, . . . ,

where x0 = 1.

27Consider a sequence of finer and finer triangulations of K and make use of the function c : K → {1, 2, 3}
defined by

c(x) = min{i : (T (x))i < xi}
where x = (x1, x2, x3). Note that the function c is well-defined provided T has no fixed point, and apply
Sperner’s lemma.

28Consider the mapping

xn 7→
1

4
(an − xn−1 − xn+1), n = 1, 2 . . . .
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6.5 Hilbert spaces

Key words: inner product, inner product space, polarization identity, Hilbert space, orthog-
onality, strong/weak convergence, orthonormal sequence, Gram–Schmidt orthonormalization
process, complete sequence, orthogonal complement, convex set, orthogonal projection and
decomposition, separable Hilbert space

1. Let z1, . . . , zn be complex numbers. Show that

|z1 + . . .+ zn| ≤
√
n‖(z1, . . . , zn)‖.

2. Let x, y be vectors in a complex vector space with inner product, and assume that

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Does this imply that 〈x, y〉 = 0?

3. Let H be a Hilbert space. Show that

‖x− z‖ = ‖x− y‖+ ‖y − z‖

if and only if y = αx+ (1− α)z for some α ∈ [0, 1].

4. Let ‖ · ‖ denote the norm in a Hilbert space. Prove that

‖x+ y‖ ‖x− y‖ ≤ ‖x‖2 + ‖y‖2

and
‖x+ y‖2 − ‖x− y‖2 ≤ 4‖x‖ ‖y‖.

5. Let E be an inner product space. Show that for x, y ∈ E, x ⊥ y if and only if ‖αx +
βy‖2 = ‖αx‖2 + ‖βy‖2 for all scalars α and β.

6. Show that C([0, 1]) (equipped with the sup-norm) is not an inner product space.

7. Prove that any complex Banach space with norm ‖ · ‖ satisfying the parallelogram law
is a Hilbert space with the inner product

〈x, y〉 =
1

4
[‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2],

and ‖x‖2 = 〈x, x〉.

8. Let x1, x2, . . . , xN be linearly independent vectors in an inner product space, with N =(
n+ 1

2

)
. Show that there are orthonormal vectors y1, y2, . . . , yn such that

yi = Σj∈Aiλjxj , i = 1, 2, . . . , n,

where A1, A2, . . . , An are disjoint subsets of {1, 2, . . . , N}.
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9. Let T : E → E be a bounded linear operator on a complex inner product space. Show
that T = 0 if 〈Tx, x〉 = 0 for all x ∈ E. Show that this does not hold in the case of real
inner product spaces.

10. Suppose xn → x and yn → y in a Hilbert space H and αn → α in C. Prove that

(a) xn + yn → x+ y

(b) αnxn → αx

(c) 〈xn, yn〉 → 〈x, y〉
(d) ‖xn‖ → ‖x‖

11. Suppose xn
w→ x and yn

w→ y in a Hilbert space H and αn → α in C. Prove or disprove
that

(a) xn + yn
w→ x+ y

(b) αnxn
w→ αx

(c) 〈xn, yn〉 → 〈x, y〉
(d) ‖xn‖ → ‖x‖

12. Let (en)∞n=1 be an ON-basis for H. Assume that the sequence (fn)∞n=1 in H satisfies the
conditions ‖fn‖ = 1 and fn ∈ {e1, e2, . . . , en}⊥ for n = 1, 2, . . .. Show that fn

w→ 0.

13. Suppose xn
w→ x in a Hilbert space H. Show29 that there is a positive constant M such

that
sup
n
‖xn‖ ≤M.

14. Let (xn)∞n=1 be a bounded sequence, i.e. supn ‖xn‖ ≤ M , in a separable Hilbert space
H. Show that there is a subsequence (xnk)∞k=1 and an x ∈ H such that

xnk
w→ x.

What happens if H is not separable?

15. Suppose xn
w→ x in a Hilbert space H. Show that there exists a subsequence (xnk)∞k=1

of (xn)∞n=1 such that
1

m
Σm
k=1xnk → x i H,

då m→∞.

16. Consider Rn as a Hilbert space with the standard inner product and the corresponding
norm, i.e. the Euclidean metric. Assume that S is a closed convex set in Rn and that
for each x ∈ Rn there exists a unique y ∈ S such that

‖x− y‖ = sup
z∈S
‖x− z‖.

Show that S consists of a single element.
29Hint: Use Banach-Steinhaus theorem above
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17. Let (ek)
n
k=1 be a sequence of vectors in a Hilbert space H. Assume that ‖ek‖ = 1 for all

k. Show30 that
Σn
k=1|〈x, ek〉|2 ≤ ‖x‖2(1 + (Σn

k,l=1

k 6=l
|〈ek, el〉|2)

1
2 )

for all x ∈ H. Note that if (ek)
n
k=1 is an ON-sequence in H then the statement is called

Bessel’s inequality.

18. Assume that M is a closed subspace of a Hilbert space H. Let {xn}∞n=1 be a sequence
converging to x in H. Moreover let xn = yn + zn, n = 1, 2, . . ., be the orthogonal
decomposition of xn with yn ∈ M and zn ∈ M⊥. Show that yn converges to y and zn
converges to z where x = y + z is the orthogonal decomposition of x.

19. Consider the inner product space X of the vector space C([0, 1]) with the inner product
of L2([0, 1]). Set S = {f ∈ C([0, 1]) : f(x) = 0 for x ∈ [0, 1

2 ]}. Show that S is a closed
subspace of X and calculate S⊥. Is X = S + S⊥?

20. What is the orthogonal complement of all even functions in L2([−1, 1])?

21. Let M be the subset {(xn)∞n=1 : x2n = 0 for all n ∈ Z+} in l2. Give M⊥ and M⊥⊥.

22. Let A be a subset of a Hilbert space. Show that

A⊥⊥ = SpanA.

23. Let A and B, ∅ 6= A ⊂ B, be subsets of an inner product space. Show that

(a) B⊥ ⊂ A⊥

(b) A⊥⊥⊥ = A⊥.

24. Let M 6= ∅ be a subset of a Hilbert space H. Show that SpanM is dense in H if and
only if M⊥ = {0}. By the span of a set A we mean all finite linear combinations of the
elements in the set A.

25. Let (xn)∞n=1 be a complete orthonormal sequence in a Hilbert space H. Show that

〈x, y〉 = Σ∞n=1〈x, xn〉〈y, xn〉

for all x, y ∈ H. Also show that the reverse implication is true.

26. Let (xn)∞n=1 be an orthonormal sequence in a Hilbert space H. Show that (xn)∞n=1 is
complete if and only if the closure of the span of (xn)∞n=1 equals H.

27. If (xn)∞n=1 is a complete orthonormal set for a vector subspace S of a Hilbert space H,
then any x ∈ S can be expressed in the form x = Σcnxn. Conversely, if y = Σcnxn, does
if follow that y ∈ S? What happens if S is a Hilbert subspace of H?

28. Given a convergent infinite series, one cannot in general rearrange the terms; if the
sequence (vn) is a rearrangement of a series (un), and Σun = U , then Σvn need not
equal U , unless Σun converges absolutely. However, prove that if (en) is a complete
orthonormal set and (fn) is a sequence obtained by arranging (en) in a different order,
then (fn) is a complete orthonormal set, and therefore the series x = Σ〈x, en〉en can be
rearranged.

30Hint: Note that Σ|〈x, ek〉|2 = 〈x,Σ〈x, ek〉ek〉.
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29. (A space with no complete ON sequence) The set of all periodic functions R → C is
clearly not a vector space. But if we consider the setM of functions which are sums and
products of finitely many periodic functions, we obtain a vector space. The elements of
M are called almost-periodic functions. It can be proved that for any f, g ∈M ,

lim
T→∞

(
1

2T

∫ T

−T
f(t)g(t) dt)

exists and defines an inner product on M . Verify that any two members of the family
of functions eiat, where a is real, are orthogonal in the inner product space M . Deduce
that M has no countable basis.

30. Find an orthonormal basis of the subspace Span{1 + x, 1− x} of L2([0, 1]).

31. Let P and Q denote orthogonal projections onto two subspaces in a Hilbert space. Prove
that ‖P −Q‖ ≤ 1.

32. Suppose S is a closed convex subset of a Hilbert spaceH and let PS denote the orthogonal
projection onto S, i.e. for any x ∈ H, PS(x) denotes the point in S, which is nearest to
x. Prove that

‖PS(x)− PS(y)‖ ≤ ‖x− y‖ for all x, y ∈ H.

33. In the vector space Rn use the norm ‖u‖ = Σ|ui|. Let x = (1,−1, 0, . . . , 0) and let E
be the subspace {(t, t, 0, . . . , 0) : t ∈ R}. Setting yt = (t, t, 0, . . . , 0) for the elements
of E, show that all yt with |t| ≤ 1 have the same distance from x, and are closer to x
than any yt with |t| > 1. This shows that the best approximation in a subspace can be
non-unique in normed spaces, though in Hilbert spaces they are unique. Deduce that
the norm Σ|ui| cannot be obtained from any inner product.

34. Let H = {f ∈ L2([0, 1]) : f ′ ∈ L2([0, 1])}, and for f, g ∈ H define

〈f, g〉 = f(0)g(0) +

∫ 1

0
f ′(s)g′(s) ds.

Take L2 here to be the space of real functions. Show that H is a Hilbert space. For each
t ∈ [0, 1] define a function Rt ∈ H by Rt(s) = 1 + min(s, t), where min(s, t) denotes the
smaller of s and t. Show that 〈f,Rt〉 = f(t) for all f ∈ H.

Now consider the following problem in approximation theory. The interval [0, 1] is
divided into subintervals given by numbers 0 = t1 < t2 < . . . < tn = 1. Given a
function f , we wish to approximate it by a piecewise linear function F which is linear
in each subinterval. Show that the set of all such functions F is the subspace spanned
by {Rti : i = 1, 2, . . . , n}. Show that the best piecewise linear approximation to f in the
sense of the norm corresponding to the above inner product in H is the piecewise linear
function F which equals f at the points ti.

35. Suppose A : H → H is a linear mapping that satisfies

〈Ax, y〉 = 〈x,Ay〉 all x, y ∈ H.

Prove that A is a continuous mapping.31

31Hint: Apply Banach–Steinhaus theorem
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36. Let (xn)∞n=1 be a complete ON-sequence in a Hilbert space H and let (yn)∞n=1 be another
ON-sequence such that

Σ∞n=1‖xn − yn‖2 < 1.

Show that the ON-sequence (yn)∞n=1 also is complete.

37. Let (un)∞n=1 be an orthonormal sequence in L2([0, 1]). Show that the sequence is an
orthonormal basis if

Σ∞n=1|
∫ x

0
un(t) dt|2 = x, for all x ∈ [0, 1].
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6.6 Linear operators on Hilbert spaces

Key words: bilinear functional, quadratic form, coercive functional, adjoint operator, self-
adjoint operator, inverse operator, normal operator, isometric operator, unitary operator,
positive operator, projection operator, compact operator, finite-dimensional operator, eigen-
values/eigenvectors, resolvent, spectrum, unbounded operators

1. Let A be a self-adjoint operator on a Hilbert space H and assume that R(A) = H. Show
that A : H → R(A) is an invertible mapping.

2. Assume that An → A in B(H,H), whereH is a Hilbert space. Show that A is self-adjoint
if all An are self-adjoint.

3. Let A be a linear compact operator on a Hilbert space H. Prove that I+A is a compact
operator if and only if H is finite-dimensional.

4. Let B be a bounded linear operator on a Hilbert space. Prove that

R(B)⊥ = N (B∗)

and
R(B) = N (B∗)⊥.

5. Let A be a compact linear operator on a Hilbert space H. Prove that R(I − A) is a
closed subspace32 of H.

6. Let A be a compact linear operator on a Hilbert space. Prove that

R(I −A) = N (I −A∗)⊥.

7. Assume that xn
w→ x in a Hilbert space H. Moreover assume that A : H → H is a

bounded linear mapping. Does it follow that Axn
w→ Ax?

8. Show that for every compact operator A on a Hilbert space H there exists a sequence
(An)∞n=1 in B(H,H) such that dimR(An) <∞ for n = 1, 2, . . . and An → A in B(H,H).

9. Show that the integral operator on L2([0, 1]) with kernel K satisfying∫ 1

0

∫ 1

0
|K(x, y)|2 dxdy <∞

is compact33.
32Hint: Let y ∈ H and suppose xn−Axn → y. Show that one can pick xn to belong to N (I−A)⊥ for every

n. Show that {xn} must be bounded.
33Hint: Approximate K by K̃(x, y) = Σni,j=1pi(x)qj(y). Alternatively approximate K by continuous K̃ and

use Arzela-Ascoli’s theorem.
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10. (a) Suppose f ∈ L1(R) and set

(Ag)(t) =

∫ ∞
−∞

g(s)f(t− s) ds, g ∈ L2(R).

Prove that A defines a bounded linear operator on L2(R) with an operator norm
≤ ‖f‖1.

(b) Suppose h > 0 and set

(Bg)(t) =
1

2h

∫ t+h

t−h
g(s) ds, g ∈ L2(R).

Prove that B defines a bounded linear operator on L2(R) with norm 1.

11. Let k ∈ L2([0, π]× [0, π]) and consider the linear mapping

T : L2([0, π])→ L2([0, π])

given by

Tf(x) =

∫ π

0
k(x, y)f(y) dy, x ∈ [0, π]

for f ∈ L2([0, π]). One standard estimate for the operator norm for T is

‖T‖ ≤ ‖k‖L2([0,π]×[0,π]).

Prove34 that also the following estimate is true:

‖T‖ ≤ (sup
x

∫ π

0
|k(x, y)| dy)

1
2 (sup

y

∫ π

0
|k(x, y)| dx)

1
2 .

Finally apply these two estimates to the kernel function k(x, y) = cos(x−y), i.e. calculate
the two upper bounds for the operator norm.

12. Set
(Ag)(t) = tg(t), g ∈ L2([0, 1]).

Prove that A defines a linear bounded self-adjoint operator on L2([0, 1]) without eigen-
functions.

13. Find35 a mapping f : [0, 1]→ L2([0, 1]) such that f(t1) 6= f(t2) for all t1 6= t2 and such
that the vectors f(t1)− f(t2) and f(t3)− f(t4) are orthogonal for all t1 < t2 < t3 < t4.

14. The operator A on L2([0, 1]) is defined by

(Af)(x) =

∫ x

0
f(y) dy, 0 ≤ x ≤ 1.

Find A∗.
34Apply the formula ‖g‖ = sup‖h‖=1 |〈g, h〉| to Tf . Also the estimate ab ≤ c

2
a2 + 1

2c
b2 for all a, b ∈ R and

c > 0 can come in handy.
35Hint: Let f(t) be the characteristic function for the set [0, t] for t ∈ [0, 1].
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15. Show that an operator of rank n can have at most n eigenvalues.

16. Set
(Ag)(t) =

∫ ∞
−∞

g(s)

1 + (t− s)2
ds, g ∈ L2(R).

Prove that A defines a linear bounded and self-adjoint operator on L2(R). Finally prove
that A is not a compact operator.

17. Set
(Tf)(x) =

∫ π

0
sin(x+ y)f(y) dy, 0 ≤ x ≤ π.

Find the norm of T regarded as an operator on

(a) the Banach space C([0, π])

(b) the Hilbert space L2([0, π]).

18. Give an example of a non-self-adjoint operator on a Hilbert space H whose range is H
and which is not invertible.

19. Let Tn : E → H, n = 1, 2, . . ., be a sequence of bounded linear operators from a normed
space E into a Hilbert space H. We say that

(a) (Tn)∞n=1 is convergent in B(E,H) (or convergent in norm in B(E,H) or uniformly
operator convergent) if (Tn)∞n=1 is convergent in B(E,H);

(b) (Tn)∞n=1 is strongly operator convergent if (Tn(x))∞n=1 converges in H for all x ∈ E;
(c) (Tn)∞n=1 is weakly operator convergent if (Tn(x))∞n=1 converges weakly in H for all

x ∈ E.

Show that a)⇒ b)⇒ c). Moreover, let An, Bn be operators on l2 defined by

An((x1, x2, . . .)) = ( 0, . . . , 0︸ ︷︷ ︸
n positions

, xn+1, xn+2, . . .)

and
Bn((x1, x2, . . .)) = ( 0, . . . , 0︸ ︷︷ ︸

n positions

, x1, x2, . . .).

In what modes do these sequences of operators converge?

20. A bounded linear operator A on a Hilbert space H is called unitary if A∗A = AA∗ = I.
Show that if A is unitary then ‖Ax‖ = ‖x‖ for all x ∈ H, i.e. unitary operators do not
change lengths. Deduce that all eigenvalues of unitary operators have modulus 1, and
eigenvectors belonging to different eigenvalues are orthogonal. Show that all unitary
operators are invertible.

If B is a self-adjoint operator, show that eiB is unitary.

21. A bounded linear operator A on a Hilbert space H is called a Hilbert-Schmidt oper-
ator if the series Σij |〈Aei, fj〉|2 converges whenever (ei) and (fj) are orthonormal bases
for the Hilbert space H. Show that this sum equals Σi‖Aei‖2, and deduce that it is
independent of the choice of bases (ei) and (fj).
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Show that the set of Hilbert-Schmidt operators on a given Hilbert space H is a vector
space, and that ‖A‖HS = (Σi‖Aei‖2)1/2 is a norm on that space. Show that ‖A‖HS ≥
‖A‖ where ‖A‖ is the usual operator norm. Give an example in which ‖A‖HS > ‖A‖.
If A and B are Hilbert-Schmidt operators, show that Σ〈Aei, Bei〉 converges absolutely
for every orthonormal basis (ei), and is independent of the choice of (ei). Show that one
can define an inner product [A,B] on the space of Hilbert-Schmidt operators on H by
[A,B] = Σ〈Aei, Bei〉.
If A and B are integral operators on L2([0, 1]) with continuous kernels K and L respec-
tively, show that they are Hilbert-Schmidt operators, and [A,B] =

∫ ∫
K(s, t)L(s, t) dsdt.

22. A bounded linear operator A on a Hilbert space is called normal if it commutes with
its adjoint, AA∗ = A∗A. Every self-adjoint operator is obviously normal.

(a) Show that if the function K(x, y) satisfies K(x, y) = K(y, x), then for any real d,
the operator u 7→ du+ i

∫ 1
0 K(x, y)u(y) dy on the complex Hilbert space L2([0, 1])

is normal.
(b) Show that if B,C are commuting self-adjoint operators, then B + iC is normal.
(c) Prove the converse of (b), i.e. for any normal operator A, there are self-adjoint

commuting operators B,C such that A = B + iC.

23. Show that a compact normal operator has a complete set of orthogonal eigenvectors.

24. Given an infinite matrix of numbers kij , i, j = 1, 2 . . ., we say that the double series
Σij |kij |2 converges if for each i the series Σj |kij |2 converges to a number Li such that
ΣiLi converges, and for each j the series Σi|kij |2 converges to a number Mj such that
ΣjMj converges. If Σij |kij |2 converges and kij = kji for all i, j, we define an operator K
on the space l2 by (Kx)i = Σ∞j=1kijxj . Show that K is a compact self-adjoint operator
l2 → l2, and write out what the spectral theorem says in this case.

25. Let (pi) and (qi) be two complete orthonormal sets for L2([0, 1]). Let H be the space
of square-integrable functions of two variables on the square 0 ≤ x, y ≤ 1, with inner
product

∫ 1
0

∫ 1
0 f(x, y)g(x, y) dxdy.

(a) Show that the set of functions pi(x)qj(y) is orthonormal in H.

(b) Show that if φ ∈ H and
∫ 1

0

∫ 1
0 φ(x, y)pi(x)qj(y) dxdy = 0 for all i, j, then φ = 0.

(c) The set of functions pi(x)qj(y) is labeled by two integers and is therefore count-
able, and can be arranged in a sequence. Prove that this sequence is a complete
orthonormal sequence.

26. Given a function K such that K(x, y) = K(y, x) and
∫ 1

0

∫ 1
0 |K(x, y)|2 dxdy exists, let λi

and φi be the eigenvalues and orthonormal eigenfunctions of the integral operator on
L2([0, 1]) whose kernel is K. Show that

K(x, y) = Σiλiφi(x)φi(y),

the convergence being with respect to the norm in the space H in the previous problem.
Show also that ∫ 1

0

∫ 1

0
|K(x, y)|2 dxdy = Σi|λi|2.
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27. K : R2 → C is a piecewise continuous function, and K(x, y) = K(y, x). The integral
operator A on L2([0, 1]) with kernelK has eigenvalues λi and orthonormal eigenfunctions
φi.

(a) Show that the series Σcnφn(x) converges absolutely and uniformly if the constants
satisfy Σ|cn/λn|2 <∞.

(b) Show that if f is in the range of A, then the series Σ〈f, φn〉φn(x) converges abso-
lutely and uniformly to f on [0, 1]. Is this still true if we remove the condition that
f lies in the range of A?

28. Above it was shown that the eigenvalues λi of an integral operator with square-integrable
kernel are such that Σ|λi|2 converges. Is this true for compact self-adjoint operators in
general?

29. Let T be the linear mapping on L2([0, 1]) defined by

Tf(x) =

∫ 1

0
(x+ y)f(y) dy, 0 ≤ x ≤ 1.

Show that T is bounded and calculate ‖T‖.

30. Let H be a Hilbert space. Prove or disprove the statement: Every bounded linear
mapping on H preserves orthogonality.

31. Let X be a separable Hilbert space and T : X → X a compact linear operator. Show
that T can be approximated by finite rank operators in B(H), i.e. there exist a sequence
of finite rank operators Tn on H such that Tn → T in operator norm.

32. Let (en)∞n=1 be an ON-basis for a Hilbert space H and assume that T : H → H is a
bounded linear operator on H such that

Σ∞n=1‖Ten‖2 <∞.

Show that if (fn)∞n=1 is another ON-basis for H then

Σ∞n=1‖Tfn‖2 = Σ∞n=1‖Ten‖2.

Moreover show that
‖T‖2 ≤ Σ∞n=1‖Ten‖2.

33. Set R+ = {x ∈ R : x ≥ 0}. For f ∈ L2(R+) define

Mf(x) =
1

x

∫ x

0
f(t) dt, x > 0.

Show that
M : L2(R+)→ L2(R+)

is a bounded linear mapping on L2(R+), calculate the operator norm of I −M and,
finally, determine the adjoint operator of M . Here I denotes the identity operator on
L2(R+).
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34. Let X be a Banach space and T : X → X a compact36 linear operator. Show that
there exists a constant C such that for every y ∈ R(I + T ) there exists a x ∈ X with
y = (I + T )x such that

‖x‖ ≤ C‖y‖.

35. Let an, n = 1, 2, 3, . . . be non-negative reals and set

C = {x ∈ l2 : x = (xn)∞n=1, |xn| ≤ an alln}.

Show that if C is a compact subset in l2 then an → 0 as n → ∞. For what sequences
(an)∞n=1 is C compact?

36. Let T be defined on L2([0, 1]) by Tf(x) =
∫ x

0 f(y) dy. Show that T is a compact operator
on L2([0, 1]) with σ(T ) = {0}. In particular prove that T has no eigenvalues 6= 0.

37. Let A be the linear mapping on L2([0, 1]) defined by

Af(x) =

∫ 1

0
(x− y)2f(y) dy, 0 ≤ x ≤ 1.

Calculate

(a) A∗

(b) ‖A‖.

38. Let T be a positive, self-adjoint, compact operator on a Hilbert space H. Show that

〈Tx, x〉n ≤ 〈Tnx, x〉 · 〈x, x〉2(n−1),

for all positive integers n and all x ∈ H.

39. Let A be the linear mapping on L2([0, 1]) defined by

Af(x) =

∫ 1

0
(x− y)f(y) dy, 0 ≤ x ≤ 1.

Calculate

(a) A∗A

(b) ‖A‖.

40. Let T be a self-adjoint operator on a Hilbert space H. Assume that Tn is compact for
some integer n ≥ 2. Prove that T is compact.

41. Let H be an infinite-dimensional Hilbert space and let T : H → C be a bounded linear
functional 6= 0. Calculate the dimension for the subspace N (T )⊥ of H. Give an example
of a Hilbert space H and a functional T as above.

36Exactly the same definition as for a linear operator on a Hilbert space
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42. Let T be a self-adjoint, positive, compact operator on a Hilbert space H with ‖T‖ ≤ 1.
Give an estimate37 for

‖3T 4 − 20T 3 + T 2‖.

43. Let S be a dense subset in a Banach space X. Moreover let (Tn)∞n=1 be a sequence of
linear operators on X. Assume that

(a) limn→∞ Tn x exists for every x ∈ S and

(b) there exists a C > 0 such that

‖Tn x‖ ≤ C‖x‖

for all n and all x ∈ X.

Show that limn→∞ Tn x exists for every x ∈ X.

44. For x = (. . . , x−2, x−1, x0, x1, x2, . . .) ∈ l2 define

(Tx)n =

{
xn+1 + 2xn−1 + 10xn, n = 2k, k ∈ Z
2xn+1 + xn−1 + 10xn, n = 2k + 1, k ∈ Z

.

Which of the statements below hold true?

(a) T is a bounded linear operator on l2

(b) T is self-adjoint

(c) T is an invertible operator38.

45. Let T be a bounded linear operator on a Hilbert space H where dimR(T ) = 1. Show
that for every y ∈ R(T ), y 6= 0, there exists a uniquely defined x ∈ H such that

Tz = 〈z, x〉y, z ∈ H.

Moreover show that
‖T‖ = ‖x‖ · ‖y‖.

Apply this fact for calculating the operator norm for the mapping

Tf(t) =

∫ 1

0
et−sf(s) ds, f ∈ L2[0, 1].

46. Set
Au(x) =

∫ π

0
ex+y cos(x+ y)u(y) dy, x ∈ [0, π].

Calculate the operator norm for A and see if A is a compact operator on the Banach
space

37Better than the trivial estimate

‖3T 4 − 20T 3 + T 2‖ ≤ 3‖T‖4 + 20‖T‖3 + ‖T‖2 ≤ 24.

38i.e. T−1 ∈ B(l2).
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(a) C[0, π],

(b) L2[0, π].

47. Let T be a normal linear operator on a Hilbert space H, i.e. T is a bounded linear
operator that commutes with its adjoint operator T ∗, more precisely

TT ∗ = T ∗T.

Show that

(a) ‖Tx‖ = ‖T ∗x‖ for all x ∈ H;

(b) λ is an eigenvalue with the eigenvector x for T iff λ is an eigenvalue with the
eigenvector x for T ∗.

48. Let h ∈ C([0, 1]× [0, 1]) be a real-valued function such that

h(x, y) = h(y, x) > 0

for all x, y ∈ [0, 1]. Set

Tf(x) =

∫ 1

0
h(x, y)f(y) dy, x ∈ [0, 1]

for f ∈ L2([0, 1]). Show that the bounded linear operator T on L2([0, 1]) has an eigen-
value λ = ‖T‖ which is simple.

49. For u ∈ C[0, 1] set

(Au)(x) =

∫ 1−x

0
|x− y|u(y) dy, x ∈ [0, 1].

Show that A is a bounded linear operator on the Banach space C[0, 1] and calculate the
operator norm ‖A‖.

50. Let H be a complex Hilbert space and A a bounded linear operator on H with the
property

〈Ax, x〉 ∈ R

for all x ∈ H. Prove that A is self-adjoint.

51. Calculate the operator norm for A : C[0, π]→ C[0, π] defined by

(Af)(x) =

∫ π

0
(1 + ei(x−y))f(y) dy.

Also calculate the operator norm for B : L2[0, π]→ L2[0, π] defined by

(Bf)(x) =

∫ π

0
(1 + ei(x−y))f(y) dy.

The functions are complex-valued.
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52. Let T be defined for x = (xn)∞n=1 by

(Tx)n = nxn, n = 1, 2, . . .

Show that D(T ) = {x ∈ l2 : Tx ∈ l2} is a dense subset in l2 and that T is a bounded
operator39 in l2, i.e. xn ∈ l2 for n = 1, 2, . . ., xn → y i l2, Txn → z i l2 implies that
y ∈ D(T ) and Ty = z.

53. Consider the integral operator

Af(x) =

∫ 2π

0
cos(x− y)f(y) dy, 0 ≤ x ≤ 2π.

Show that A defines a bounded linear operator on the Banach spaces (real-valued func-
tions)

(a) C[0, 2π]

(b) L2[0, 2π].

Also calculate the operator norm ‖A‖ for one of these spaces.

54. Consider the mapping

(x1, x2, x3, . . .) 7→ (x1,
1

2
(x1 + x2),

1

3
(x1 + x2 + x3), . . . ,

1

n
(x1 + x2 + . . . xn), . . .).

Show that this is a bounded linear mapping on l2 that is not surjective.

55. Let T be a bounded linear operator on a Hilbert space H with ‖T‖ = 1. Assume that
there exists a x0 ∈ H such that Tx0 = x0. Show that we have T ∗x0 = x0.

39Use e.g. the fact that T is a symmetric operator.
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6.7 Ordinary differential equations

Key words:Green’s function, symmetric operators

1. Calculate the Green’s functions for the boundary value problems

a)

{
u′′(x) + u(x) = f(x)

u′(0) = u′
(π

2

)
= 0, 0 ≤ x ≤ π

2

b)
{
u′′(x) = f(x)
u(0)− 2u(1) = u′(0)− 2u′(1) = 0, 0 ≤ x ≤ 1

c)
{
u′′(x) + u(x) = f(x)
u(0) = u′(0) = 0, 0 ≤ x ≤ T

d)

{ 1

6
u(4)(x) = f(x)

u(0) = u′(0) = u(1) = u′(1) = 0

e)
{
u(4)(x) = f(x)
u(0) = u′′(0) = u(1) = u′′(1) = 0

2. Show that (using the notations from ”A note on ordinary differential equations”) the
boundary value problem {

Lu = f
Ru = c

is uniquely solvable for every f ∈ Cn(I) and c ∈ Cn iff

det{Rjuk}1≤j,k≤n 6= 0.

3. Show that the Green’s function g(x, t) in Example 1 on page 9 in ”A note on ordinary
differential equations” satisfies g(x, t) = g(t, x) and hence the operator G̃ : L2([0, 1]) →
L2([0, 1]) defined by

(G̃f)(x) =

∫ 1

0
g(x, t)f(t)dt,

is self-adjoint.

4. Show that the problem{
u′′(x) + u(x) = eix + 1

2Re u(x), 0 ≤ x ≤ π/2
u′(0) = u′(π/2) = 0, u ∈ C2([0, π/2])

has a unique solution.

5. Set (Lu)(x) = u(4)(x), 0 ≤ x ≤ 1. Show that L0 is symmetric if

(a) R1u = u(0), R2u = u′(0), R3u = u(1), R4u = u′(1)

(b) R1u = u(0), R2u = u′′(0), R3u = u(1), R4u = u′′(1).
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6. Assume that (Lu)(x) = −u′′(x) + u(x), 0 ≤ x ≤ 1 and that R1u = u(0) − u(1) and
R2u = u′(0)− u′(1). Show that

(a) L0 is bijective

(b) L0 has both 1- and 2-dimensional eigenspaces.

7. Assume that (Lu)(x) = (p(x)u′(x))′ − q(x)u(x), a ≤ x ≤ b, where p ∈ C1(I) and
q ∈ C(I) are real-valued and p(x) > 0, a ≤ x ≤ b. Moreover assume that

R1u = α11u(a) + α21u
′(a)

and
R2u = β12u(b) + β22u

′(b)

where (α11, α21) ∈ R2 \ {0} and (β12, β22) ∈ R2 \ {0}. Show that L0 is symmetric.

8. Assume that the integral operator

(Qf)(x) =

∫ b

a
q(x, y)f(y)dy, a ≤ x ≤ b,

defined on L2(I) with an L2- kernel q is self-adjoint and has the eigenvalues (λi)
∞
1 ,

counted with multiplicity, and corresponding eigenfunctions (ei)
∞
1 .

(a) Use Bessel’s inequality to show that

∞∑
1

λ2
i |ei(x)|2 ≤

∫ b

a
|q(x, y)|2dy.

(b) Show that
∞∑
1

λ2
i ≤

∫ b

a

∫ b

a
|q(x, y)|2dxdy.

(c) Show that

q(x, y) =
∞∑
1

λiei(x)ei(y) i L2(I × I).

9. Prove that

min(x, y) =
∞∑
n=0

2

(n+ 1
2)2π2

sin

(
n+

1

2

)
πx sin

(
n+

1

2

)
πy

in L2([0, 1]× [0, 1]).

10. Show that the series in Theorem 1.7 in ”A note on ordinary differential equations”
converges uniformly to u.

11. Prove that there is no function u defined in the interval [0, 1] such that{
xu′(x) + u(x) = 0, 0 ≤ x ≤ 1
u(0) = 1.
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12. Prove the existence of solutions u of the following boundary value problem{
−u′′(x) = 3(1 + u2(x)), 0 ≤ x ≤ 1
u(0) = u(1) = 0, u ∈ C2([0, 1]).

13. Prove the existence and uniqueness of solutions of the following boundary value problem −u′′(x) = 7
u(x)

1 + u2(x)
+ sin(πx), 0 ≤ x ≤ 1

u(0) = u(1) = 0, u ∈ C2([0, 1]).

14. Prove the existence and uniqueness of solutions of the following boundary value problem{
4u′′(x) = |x+ u(x)|, 0 ≤ x ≤ 1
u(0)− 2u(1) = u′(0)− 2u′(1) = 0, u ∈ C2([0, 1]).

15. Let λ ∈ R be different from 0.

(a) Solve the equation {
|u′(x)|2 +

1

λ
u′′(x) = 1, 0 ≤ x ≤ 1

u(−1) = u(1) = 0, u ∈ C2([0, 1]).

(b) Let u(x) = u(x, λ) be the solution in part (a). Calculate limλ→±∞ u(x, λ).

16. Show that the following boundary value problem u′′(x) + u(x) =
u(x)

2 + u2(x)
, 0 ≤ x ≤ π

2
u(0) = u(π2 ) = 0, u ∈ C2([0, π2 ])

17. Show that the following boundary value problem (almost the same as problem 1) u′′(x) + u(x) = λ
u(x)

2 + u2(x)
, 0 ≤ x ≤ π

2
u(0) = u(π2 ) = 0, u ∈ C2([0, π2 ])

has a solution for all λ ∈ R.

18. Prove the existence and uniqueness of a solution to the following boundary value problem{
u′′(x) + u′(x) = arctanu(x2), 0 ≤ x ≤ 1
u(0) = u(1) = 0, u ∈ C2([0, 1])

19. Consider the differential equation{
−u′′ = λeu, 0 < x < 1,
u(0) = u(1) = 0.

(a) Formulate the boundary value problem as a fixed point problem u = Tu, where T
is an integral operator.
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(b) Set B = {u ∈ C([0, 1]) : ‖u‖∞ ≤ 1}. Show that T maps B into itself provided
0 < λ < λ0 for λ0 sufficiently small. Give a numerical value on λ0.

(c) Show that the differential equation is uniquely solvable in B with λ chosen as in
(b).

20. Show that there exists a unique C2-function u(x) defined on [0, 1] with u(0) = u(1) = 0
such that

u′′(x)− cos2 u(x) = 1, x ∈ [0, 1].

21. Show that there exists a unique C2-function u(x) defined on [0, 1] such that

u(0)− 2u(1) = u′(0)− 2u′(1) = 0

and
4u′′(x)− |u(x) + x| = 0, x ∈ [0, 1].

22. Show that there exists a unique C2-function u(x) defined on [0, 1] such that u(0) =
u′(0) = 0 and

u′′(x)− u(x) +
1

2
(1 + u(x2)) = 0, x ∈ [0, 1].

23. Show that there exists a unique C2-function u(x) defined on [0, π2 ] such that u′(0) =
u′(π2 ) = 0 and

u′′(x) + u(x) =
1

2
sinu(

1

2
x2), x ∈ [0,

π

2
].

24. Let H be a Hilbert space. Apply the spectral theorem to find a H-valued solution u(t)
to the initial value problem 

du

dt
(t) +Au(t) = 0, t > 0,

u(0) = u0 ∈ H,

where A is a compact self-adjoint positive operator on H. Show that

‖u(t)‖ ≤ ‖u0‖, t ≥ 0.

25. Let f ∈ C([0, 1]) and λ ∈ R. Show that the equation{
u′′(x) + u′(x) + λ|u(x)| = f(x), x ∈ [0, 1]
u(0) = u(1) = 0, u ∈ C2([0, 1])

has a unique solution provided |λ| is small enough.
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