Solutions to some problems in Homework assignment 1

Problem 1 : Let Y be a finite-dimensional subspace in an infinite-dimensional normed space $(E, \|\cdot\|)$. Show that Y is closed.

Solution: (was discussed in detail in class) Consider

$$Y \ni x_n \to x \text{ in } (E, \|\cdot\|).$$

Let e_1, e_2, \ldots, e_N , $N = \dim E < \infty$, be a basis for Y. Set

$$\|\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_N e_N\|_* = \sum_{k=1}^N |\alpha_k|_*$$

Then $\|\cdot\|$ and $\|\cdot\|_*$ are two norms on Y that are equivalent, i.e. there are $\alpha, \beta > 0$ such that

$$\alpha \|z\|_* \le \|z\| \le \beta \|z\|_*, \text{ all } z \in Y$$

(since Y finite-dimensional). With

$$x_n = \alpha_1^{(n)} e_1 + \alpha_2^{(n)} e_2 + \ldots + \alpha_N^{(n)} e_N, \ n = 1, 2, 3, \ldots$$

and since $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in $\|\cdot\|_*$ (and also $\|\cdot\|$) and since $(\mathbb{C}, |\cdot|)$ is a Banach space we conclude that there are $\tilde{\alpha}_k \in \mathbb{C}, k = 1, 2, ..., N$, such that

$$\alpha_k^{(n)} \to \tilde{\alpha}_k, \ k = 1, 2, \dots, N$$

 Set

$$\tilde{x} = \tilde{\alpha}_1 e_1 + \tilde{\alpha}_2 e_2 + \ldots + \tilde{\alpha}_N e_N \in Y.$$

Finally we note that $x = \tilde{x}$ since

$$||x - \tilde{x}|| \le ||x - x_n|| + \beta \sum_{k=1}^N |\alpha_k^{(n)} - \tilde{\alpha}_k| \to 0$$

as $n \to \infty$. Hence $x \in Y$ and Y is closed.

Problem 2 : Consider the normed space C([0,1]) with norm $||f|| = \max_{x \in [0,1]} |f(x)|$. Set $M = \{f \in C([0,1]) : f \text{ is an increasing function}\}$. Show that

- 1. M is not an open set,
- 2. M is a closed set.

Solution: 1. A function $f:[0,1] \to \mathbb{R}$ is called increasing if for all $x, \tilde{x} \in [0,1]$

$$x < \tilde{x} \Rightarrow f(x) \le f(\tilde{x}).$$

Hence $0 \in M$, where 0(x) = 0 for $x \in [0, 1]$. Moreover for all $\epsilon > 0$ we have $g_{\epsilon} \notin M$ where $g_{\epsilon}(x) = -\frac{\epsilon}{2}x$, $x \in [0, 1]$. Hence $B(0, \epsilon) \notin M$ for $\epsilon > 0$ and so M is not an open set in C([0, 1]).

2. Consider $M \ni f_n \to f$ in C([0,1]) (with the max-norm). Fix arbitrary $x, \tilde{x} \in [0,1]$ with $x < \tilde{x}$. We obtain

$$f(x) - f(\tilde{x}) = \lim_{n \to \infty} f_n(x) - \lim_{n \to \infty} f_n(\tilde{x}) = \lim_{n \to \infty} (f_n(x) - f_n(\tilde{x})) \le 0.$$

Hence $f \in M$ and so M is a closed set.

- **Problem 3** : Let $C^1([0,1])$ be the vector space of all continuously differentiable functions $f:[0,1] \to \mathbb{R}$. Show that
 - 1. $C^{1}([0,1])$ with the norm |||f||| = ||f|| + ||f'|| is a Banach space,
 - 2. $C^{1}([0,1])$ with the norm ||f|| is not a Banach space.

Here ||f|| denotes $\max_{x \in [0,1]} |f(x)|$.

Solution: 1. Consider a Cauchy sequence $(f_n)_{n=1}^{\infty}$ in $C^1([0,1])$ with the norm $||| \cdot |||$. Then $(f_n)_{n=1}^{\infty}$ and $(f'_n)_{n=1}^{\infty}$ are Cauchy sequences in the Banach space $(C([0,1]), \|\cdot\|)$ and hence converges to f, g respectively in C([0,1]) with respect to the norm $\|\cdot\|$. It remains to show that $f \in C^1([0,1])$ and f' = g. Since

$$f_n(x) - f_n(0) = \int_0^x f'_n(t) \, dt \ x \in [0, 1]$$

and $f'_n \to g$ uniformly on [0,1] $(||f'_n - g|| \to 0)$ we get

$$f(x) - f(0) = \int_0^x g(t) \, dt \ x \in [0, 1]$$

Here the RHS is continuously differentiable and the statement in 1. follows.

2. (for example) Set $f_n(x) = \sqrt{(x - \frac{1}{2})^2 + \frac{1}{n}}$, n = 1, 2, 3, ..., and $f(x) = |x - \frac{1}{2}|$ for $x \in [0, 1]$. Then $f_n \in C^1([0, 1])$ for all $n, f \notin C^1([0, 1])$ and

$$||f_n - f|| = \max_{x \in [0,1]} |f_n(x) - f(x)| = \max_{x \in [0,1]} \frac{\frac{1}{n}}{\sqrt{(x - \frac{1}{2})^2 + \frac{1}{n}} + |x - \frac{1}{2}|} \le \frac{1}{\sqrt{n}}.$$

This shows that $(f_n)_{n=1}^{\infty}$ is a Cauchy sequence in $C^1([0,1])$ with respect to the norm $\|\cdot\|$ that does not converge.

Problem 4 : Consider the normed space C([0, 1]) with norm $||f|| = \max_{x \in [0,1]} |f(x)|$. Assume that $T : C([0, 1]) \to C([0, 1])$ is a linear mapping with the property that $Tf(x) \ge 0$ for all $x \in [0, 1]$ provided $f(x) \ge 0$ for all $x \in [0, 1]$. Show that

- 1. T is continuous,
- 2. $||T|| = \max_{x \in [0,1]} T \mathbb{1}(x)$ where $\mathbb{1}$ denotes the constant function taking the value 1.

Solution: Since T is a linear mapping $C([0,1]) \to C([0,1])$ it is equivalent to show that T is bounded. Fix an arbitrary $f \in C([0,1])$. Then

$$||f|| \mathbb{1}(x) \pm f(x) \ge 0$$
 for all $x \in [0, 1]$

and hence

$$T(||f|| \mathbb{1} \pm f)(x) \ge 0$$
 for all $x \in [0, 1]$

which yields

$$-T(1)(x)||f|| \le T(f)(x) \le T(1)(x)||f|| \text{ for all } x \in [0,1].$$

Hence

$$||T(f)|| = \max_{x \in [0,1]} |T(f)(x)| \le \max_{x \in [0,1]} T(1)(x) ||f||$$

where we note that $0 \leq T(\mathbb{1})(x) \leq \max_{x \in [0,1]} T(\mathbb{1})(x) < \infty$. Since $\mathbb{1} \in C([0,1])$ we have $||T|| = \max_{x \in [0,1]} T(\mathbb{1})(x)$.