Homework assignment 1

Deadline 2018-09-18

- **Problem 1** : Let Y be a finite-dimensional subspace in an infinite-dimensional normed space $(E, \|\cdot\|)$. Show that Y is closed.
- **Problem 2** : Consider the normed space C([0,1]) with norm $||f|| = \max_{x \in [0,1]} |f(x)|$. Set $M = \{f \in C([0,1]) : f \text{ is an increasing function}\}$. Show that
 - 1. M is not an open set,
 - 2. M is a closed set.
- **Problem 3** : Let $C^1([0,1])$ be the vector space of all continuously differentiable functions $f:[0,1] \to \mathbb{R}$. Show that
 - 1. $C^{1}([0,1])$ with the norm ||f|| + ||f'|| is a Banach space,
 - 2. $C^{1}([0,1])$ with the norm ||f|| is not a Banach space.

Here ||f|| denotes $\max_{x \in [0,1]} |f(x)|$.

- **Problem 4** : Consider the normed space C([0, 1]) with norm $||f|| = \max_{x \in [0,1]} |f(x)|$. Assume that $T : C([0, 1]) \to C([0, 1])$ is a linear mapping with the property that $Tf(x) \ge 0$ for all $x \in [0, 1]$ provided $f(x) \ge 0$ for all $x \in [0, 1]$. Show that
 - 1. T is continuous,
 - 2. $||T|| = \max_{x \in [0,1]} T\mathbf{1}(x)$ where **1** denotes the constant function taking the value 1.