Homework assignment 2

Deadline 2018-10-02

Problem 1: Suppose that K is a compact subset in a Banach space $(E, \|\cdot\|)$ and that $T: K \to K$ with the property

$$||T(x) - T(\tilde{x})|| < ||x - \tilde{x}|| \text{ for all } x, \tilde{x} \in K, x \neq \tilde{x}.$$

It was proven in class that T has a unique fixed point. Show that for every $x_0 \in K$ the sequence $(T^n(x_0))_{n=1}^{\infty}$ converges to the fixed point for T.

Problem 2: Assume that \mathcal{M} is a subset of C([0,1]) such that there are constants m, L > 0 such that $|f(\frac{1}{2})| \leq m$ for all $f \in \mathcal{M}$ and

 $|f(x) - f(\tilde{x})| \le L|x - \tilde{x}|$ for all $f \in \mathcal{M}$ and all $x, \tilde{x} \in [0, 1]$.

Show that \mathcal{M} is relatively compact in C([0, 1]).

Problem 3: Let $(E, \|\cdot\|)$ be a normed space. Set

$$T(x) = \begin{cases} x & \text{if } ||x|| \le 1, \\ \\ \frac{1}{||x||} x & \text{if } ||x|| > 1. \end{cases}$$

- 1. Show that $||T(x) T(\tilde{x})|| \le 2||x \tilde{x}||$ for all $x, \tilde{x} \in E$.
- 2. Show that the constant 2 cannot be improved in general. Take $E = \mathbb{R}^2$ with $\|\cdot\| = \|\cdot\|_{l^1}$.
- 3. What can be said if E is a Hilbert space with the norm given by the inner product?
- **Problem 4:** Let $T : \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \leq 1 \} \to \mathbb{R}^n$ be a continuous mapping. Moreover assume that $\langle T(\mathbf{x}), \mathbf{x} \rangle > 0$ for all \mathbf{x} with $\|\mathbf{x}\| = 1$. Here $\langle \cdot, \cdot \rangle$ denotes the standard inner product on \mathbb{R}^n with the induced norm $\|\cdot\|$. Prove¹ that there exists a $\mathbf{x}_0 \in \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\| \leq 1 \}$ such that $T(\mathbf{x}_0) = \mathbb{O}$.

¹Hint: Consider the mapping $G(\mathbf{x}) = \mathbf{x} - \epsilon T(\mathbf{x})$ for some properly choosen $\epsilon > 0$.