Institutionen för matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet

Written exam: Functional Analysis TMA401/MMA400 Solutions Date: 2014–08–30

1. Show that the following boundary value problem

$$\begin{cases} u''(x) + u(x) = \frac{u(x)}{2 + u^2(x)}, & x \in [0, \frac{\pi}{2}], \\ u(0) = u(\frac{\pi}{2}) = 0, & u \in C^2([0, \frac{\pi}{2}]). \end{cases}$$

has a unique solution u.

(4p)

Solution: The solution is given in two steps.

1. Determine the Green's function for $\begin{cases} u'' + u = F \\ u(0) = u(\frac{\pi}{2}) = 0 \end{cases}$ Set $e(x,t) = a_1(t)\cos x + a_2(t)\sin x$, where e(t,t) = 0 and $e'_x(t,t) = 1$. This gives $e(x,t) = \sin(x-t)$. The Green's function takes the form

$$g(x,t) = \sin(x-t)\theta(x-t) + b_1(t)\cos x + b_2(t)\sin x.$$

Here $g(0,t) = g(\frac{\pi}{2},t) = 0$ for $0 < t < \frac{\pi}{2}$ implies that

$$g(x,t) = \sin(x-t)\theta(x-t) - \sin x \cos t =$$
$$= \begin{cases} -\cos x \sin y, & 0 \le t \le x \le \frac{\pi}{2} \\ -\sin x \cos t, & 0 \le x \le t \le \frac{\pi}{2} \end{cases}$$

We see that $g(x,t) \leq 0$ for all $x, t \in [0, \frac{\pi}{2}]$.

2. Set

$$\begin{cases} (Tu)(x) = \int_0^{\frac{\pi}{2}} g(x,t) \frac{u(t)}{2+u^2(t)} dt, & 0 \le x \le \frac{\pi}{2} \\ u \in C([0,\frac{\pi}{2}]) \end{cases} \end{cases}$$

The boundary value problem has a unique solution iff $T : C([0, \frac{\pi}{2}]) \to C([0, \frac{\pi}{2}])$ has a unique fixed point in the Banach space $(C([0, \frac{\pi}{2}], \|\cdot\|))$, where $\|f\| = \max_{x \in [0, \frac{\pi}{2}]} |f(x)|$. For $u, v \in C([0, \frac{\pi}{2}])$ we get

$$\begin{aligned} |(Tu)(x) - (Tv)(x)| &\leq \int_0^{\frac{\pi}{2}} |g(,t)| |\frac{u(t)}{2 + u^2(t)} - \frac{v(t)}{2 + v^2(t)} |dt \leq \\ &\leq \{\text{mean value theorem}\} \leq \\ &\leq \frac{1}{2} \int_0^{\frac{\pi}{2}} |g(x,t)| dt ||u - v|| \leq \frac{\pi}{4} ||u - v|| \end{aligned}$$

This shows that T is a contraction on the space $C([0, \frac{\pi}{2}])$ and the conclusion follows from Banach's fixed point theorem.

2. Let A be a positive compact self-adjoint operator on a Hilbert space H with operator norm ≤ 1 . Give an upper estimate for the operator norm of $3A^4 - 20A^3 + A^2$ (better than the trivial estimate 24).

Solution: From the Hilbert-Schmidt theorem it follows that there exist an ON-sequence $(e_n)_{n=1}^N$ of eigenvectors corresponding to the non-zero eigenvalues $(\lambda_n)_{n=1}^N$ such that

$$\begin{cases} x = \sum_{n=1}^{N} \langle x, e_n \rangle e_n + u, \ u \in \mathcal{N}(A) \\ A(x) = \sum_{n=1}^{N} \lambda_n \langle x, e_n \rangle e_n \end{cases}$$

since A is a compact self-adjoint operator. Here N is either an integer or ∞ . We obtain

$$(3A^4 - 20A^3 + A^2)(x) = \sum_{n=1}^N (3\lambda_n^4 - 20\lambda_n^3 + \lambda_n^2) \langle x, e_n \rangle e_n$$

and

$$\begin{split} \|3A^4 - 20A^3 + A^2\| &= \sup_{\|x\|=1} \|(3A^4 - 20A^3 + A^2)(x)\| = \\ &= \sup_{\sum_{n=1}^N |\langle x, e_n \rangle|^2 = 1} (\sum_{n=1}^N |3\lambda_n^4 - 20\lambda_n^3 + \lambda_n^2|^2 |\langle x, e_n \rangle|^2)^{\frac{1}{2}} \le \\ &\leq \sup_{0 \le \lambda \le 1} |3\lambda^4 - 20\lambda^3 + \lambda^2|. \end{split}$$

Here we have used the fact that A is positive, which implies $\lambda_n \geq 0$ for alla n, and $||A|| \leq 1$, which implies $|\lambda_n| \leq 1$ for alla n, together with Parseval's formula. It remains to prove that $\sup_{0 \leq \lambda \leq 1} |3\lambda^4 - 20\lambda^3 + \lambda^2| < 24$ (a standard freshman calculus), which is left as an exercise.

3. Let k be a non-zero continuous function on $[-\pi, \pi]$ and define the operator $T \in \mathcal{B}(L^2([-\pi, \pi]))$ by Tf(x) = k(x)f(x). Show that T is not compact.

Solution: To show that T is not a compact operator on $L^2([-\pi,\pi])$ it is enough to find a sequence $(u_n)_{n=1}^{\infty}$ in $L^2([-\pi,\pi])$ such that

$$u_n \rightarrow \mathbf{0} \text{ in } L^2([-\pi,\pi])$$

and

$$T(u_n) \not\rightarrow \mathbf{0} \text{ in } L^2([-\pi,\pi]).$$

Take u_n to be the function e^{inx} , $x \in [-\pi, \pi]$, n=1,2,3,... Clearly these functions form an ON-sequence in $L^2([-\pi, \pi])$ and hence converges weakly to **0** in $L^2([-\pi, \pi])$ but

$$||Tu_n|| \ge \min_{x \in [-\pi,\pi]} |k(x)| > 0 \text{ for all } n.$$

Hence

$$T(u_n) \not\rightarrow \mathbf{0} \text{ in } L^2([-\pi,\pi])$$

4. State and prove Banach's fixed point theorem.

(5p)

Solution: See textbook

5. Let $k(x, y) \in C([0, 1] \times [0, 1])$ and define

$$Af(x) = \int_0^1 k(x, y) f(y) \, dy, \ x \in [0, 1].$$

Show that A is a compact operator on $L^2([0,1])$ and also on C([0,1]).

(5p)

Solution: (sketch) We note that

 $A(f) \in L^2([0,1])$ for each $f \in L^2([0,1])$

and also

$$A(f) \in C([0,1])$$
 for each $f \in C([0,1])$

Also A is linear as an operator on both $L^2([0,1])$ and C([0,1]). Furthermore

$$\|A\|_{L^2([0,1])\to L^2([0,1])} \le \|k\|_{L^2([0,1]\times[0,1])},$$

where we used Hölder's inequality, and

$$\|A\|_{C([0,1])\to C([0,1])} \le \max_{x\in[0,1]} \int_0^1 |k(x,y)| \, dy \le \max_{(x,y)\in[0,1]\times[0,1]} |k(x,y)|$$

Here C([0,1]) is equipped with the max-norm denoted by $||f|| = \max_{x \in [0,1]} |f(x)|$.

A is compact operator on L^2 : Set $A_n(f)(x) = \int_0^1 k_n(x, y) \, dy$ for $f \in L^2$ and $x \in [0, 1]$, where

$$k_n(x,y) = \sum_{i=1}^n \sum_{j=1}^n k(\frac{i}{n}, \frac{j}{n}) \chi_{I_i}(x) \chi_{I_j}(y)$$

and

$$\chi_{I_i}(t) = \begin{cases} 1 & t \in I_i \equiv \left[\frac{i-1}{n}, \frac{i}{n}\right) \\ 0 & \text{otherwise} \end{cases} \quad i = 1, 2, 3, \dots$$

Then dim $\mathcal{R}A_n \leq n$, i.e. A_n is a sequence of finte-rank operators on the Hilbert space L^2 and hence all A_n are compact. Moreover

$$||A - A_n|| \le ||k - k_n||_{L^2([0,1] \times [0,1])} \to 0 \text{ as } n \to \infty$$

since k is a continuous function on the compact set $[0, 1] \times [0, 1]$ and hence uniformly continuous. Finally since the vector space of compact linear operators on L^2 is a closed set in the vector space of bounded linear operators on L^2 we conclude that A is compact.

A is compact operator on C:

Here we will fix an arbitrary bounded sequence $(f_n)_{n=1}^{\infty}$ in C([0,1]) and prove that there exists a converging subsequence of $(A(f_n))_{n=1}^{\infty}$ in C([0,1]). To show this we apply the Arzela-Ascoli theorem. Let M > 0 be constant such that

$$||f_n|| \le M \ n = 1, 2, 3, \dots$$

Then

$$||A(f_n)|| \le M \max_{(x,y)\in[0,1\times[0,1]} |k(x,y)|, n = 1, 2, 3, \dots$$

Hence $(A(f_n))_{n=1}^{\infty}$ is uniformly bounded in C([0,1]). Remains to prove that $(A(f_n))_{n=1}^{\infty}$ is equicontinuous. This follows from the fact that k is a continuous function on the compact set $[0,1] \times [0,1]$ and hence uniformly continuous. By AA theorem $(A(f_n))_{n=1}^{\infty}$ has a subsequence that converges in C([0,1]).

6. Let $C_n, n = 1, 2, 3, ...$, be a sequence of closed convex subsets in a Hilbert space H. Moreover assume that

$$C_1 \supset C_2 \supset \ldots \supset C_n \supset \ldots$$

and that

$$C = \bigcap_{n=1}^{\infty} C_n \neq \emptyset.$$

For $x \notin C$, let $x_n \in C_n$ be defined by

$$||x - x_n|| = \inf_{y \in C_n} ||x - y||$$

for $n = 1, 2, 3, \ldots$ Show that $x_n \to \tilde{x}$ in H and give a geometric interpretation of \tilde{x} .

(4p)

Solution: Set $d(x, C_n) = \inf_{y \in C_n} ||x - y||$ for n = 1, 2, 3, ... and $d(x, C) = \inf_{y \in C} ||x - y||$. We know from the assumptions in the problem and the proposition on "the closest point property" that

- (a) $||x x_n|| = d(x, C_n)$ for n = 1, 2, 3, ...
- (b) $0 \le d(x, C_m) \le d(x, C_n) \le d(x, C) < \infty$ for all n > m since C is closed convex
- (c) d(x, C) > 0 since $x \notin C$

By the parallelogram law for the norm in a Hilbert space it follows that

$$||x_n - x_m||^2 + ||(x - x_n) + (x - x_m)||^2 = 2((d(x, C_n))^2 + (d(x, C_m))^2)$$

and hence for n > m

$$||x_n - x_m||^2 = 2((d(x, C_n))^2 + (d(x, C_m))^2 - 2||x - \frac{1}{2}(x_n + x_m)||^2) \le$$

$$\le 2((d(x, C_n))^2 + (d(x, C_m))^2 - 2(d(x, C_m))^2).$$

As $\lim_{n\to\infty} d(x, C_n)$ exists we obtain $||x_n - x_m|| \to 0$ as $n, m \to \infty$. This implies that $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in the Hilbert space H and hence converges. Call the limit point \tilde{x} . We note that $\tilde{x} \in C$ since C_m is closed and $x_n \in C_m$ for all $n \ge m$ and hence $\tilde{x} \in C_m$.

It remains to give a geometric interpretation of \tilde{x} . We observe that

$$d(x, C) \le ||x - \tilde{x}|| = \lim_{n \to \infty} ||x - x_n|| = \lim_{n \to \infty} d(x, C_n) \le d(x, C).$$

This gives

$$\|x - \tilde{x}\| = d(x, C)$$

and since the closest point in C to x is uniquely defined we have that \tilde{x} must be this point.