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1. Show that the following boundary value problem














u′′(x) + u(x) =
u(x)

2 + u2(x)
, x ∈ [0,

π

2
],

u(0) = u(π
2 ) = 0, u ∈ C2([0, π

2 ]).

has a unique solution u.

(4p)

Solution: The solution is given in two steps.

1. Determine the Green’s function for

{

u′′ + u = F

u(0) = u(π
2 ) = 0

:

Set e(x, t) = a1(t) cos x + a2(t) sin x, where e(t, t) = 0 and e′x(t, t) = 1. This gives
e(x, t) = sin(x − t). The Green’s function takes the form

g(x, t) = sin(x − t)θ(x − t) + b1(t) cos x + b2(t) sin x.

Here g(0, t) = g(π
2 , t) = 0 for 0 < t < π

2 implies that

g(x, t) = sin(x − t)θ(x − t) − sin x cos t =

=

{

− cos x sin y, 0 ≤ t ≤ x ≤ π
2

− sinx cos t, 0 ≤ x ≤ t ≤ π
2

We see that g(x, t) ≤ 0 for all x, t ∈ [0, π
2 ].

2. Set
{

(Tu)(x) =
∫

π
2

0 g(x, t) u(t)
2+u2(t)

dt, 0 ≤ x ≤ π
2

u ∈ C([0, π
2 ])

The boundary value problem has a unique solution iff T : C([0, π
2 ]) → C([0, π

2 ]) has
a unique fixed point in the Banach space (C([0, π

2 ], ‖·‖), where ‖f‖ = maxx∈[0, π
2
] |f(x)|.

For u, v ∈ C([0, π
2 ]) we get

|(Tu)(x) − (Tv)(x)| ≤

∫ π
2

0
|g(, t)||

u(t)

2 + u2(t)
−

v(t)

2 + v2(t)
|dt ≤

≤ {mean value theorem} ≤

≤
1

2

∫ π
2

0
|g(x, t)|dt‖u − v‖ ≤

π

4
‖u − v‖



This shows that T is a contraction on the space C([0, π
2 ]) and the conclusion follows

from Banach’s fixed point theorem.

2. Let A be a positive compact self-adjoint operator on a Hilbert space H with operator
norm ≤ 1. Give an upper estimate for the operator norm of 3A4 − 20A3 + A2 (better
than the trivial estimate 24).

(3p)

Solution: From the Hilbert-Schmidt theorem it follows that there exist an ON-sequence
(en)N

n=1 of eigenvectors corresponding to the non-zero eigenvalues (λn)N
n=1 such that

{

x = ΣN
n=1〈x, en〉en + u, u ∈ N (A)

A(x) = ΣN
n=1λn〈x, en〉en

since A is a compact self-adjoint operator. Here N is either an integer or ∞. We obtain

(3A4 − 20A3 + A2)(x) = ΣN
n=1(3λ4

n − 20λ3
n + λ2

n)〈x, en〉en

and
‖3A4 − 20A3 + A2‖ = sup

‖x‖=1
‖(3A4 − 20A3 + A2)(x)‖ =

= sup
ΣN

n=1
|〈x,en〉|2=1

(ΣN
n=1|3λ4

n − 20λ3
n + λ2

n|
2|〈x, en〉|

2)
1

2 ≤

≤ sup
0≤λ≤1

|3λ4 − 20λ3 + λ2|.

Here we have used the fact that A is positive, which implies λn ≥ 0 for alla n, and
‖A‖ ≤ 1, which implies |λn| ≤ 1 for alla n, together with Parseval´s formula. It remains
to prove that sup0≤λ≤1 |3λ4 − 20λ3 + λ2| < 24 (a standard freshman calculus), which is
left as an exercise.

3. Let k be a non-zero continuous function on [−π, π] and define the operator
T ∈ B(L

2

([−π, π])) by Tf(x) = k(x)f(x). Show that T is not compact.

(4p)

Solution: To show that T is not a compact operator on L
2

([−π, π]) it is enuogh to find
a sequence (un)∞n=1 in L

2

([−π, π]) such that

un ⇀ 0 in L
2

([−π, π])

and
T (un) 6→ 0 in L

2

([−π, π]).
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Take un to be the function einx, x ∈ [−π, π], n=1,2,3,. . . Clearly these functions form
an ON-sequence in L

2

([−π, π]) and hence converges weakly to 0 in L
2

([−π, π]) but

‖Tun‖ ≥ min
x∈[−π,π]

|k(x)| > 0 for all n.

Hence
T (un) 6→ 0 in L

2

([−π, π]).

4. State and prove Banach´s fixed point theorem.

(5p)

Solution: See textbook

5. Let k(x, y) ∈ C([0, 1] × [0, 1]) and define

Af(x) =

∫ 1

0
k(x, y)f(y) dy, x ∈ [0, 1].

Show that A is a compact operator on L2([0, 1]) and also on C([0, 1]).

(5p)

Solution: (sketch) We note that

A(f) ∈ L2([0, 1]) for each f ∈ L2([0, 1])

and also
A(f) ∈ C([0, 1]) for each f ∈ C([0, 1]).

Also A is linear as an operator on both L2([0, 1]) and C([0, 1]). Furthermore

‖A‖L2([0,1])→L2([0,1]) ≤ ‖k‖L2([0,1]×[0,1]),

where we used Hölder´s inequality, and

‖A‖C([0,1])→C([0,1]) ≤ max
x∈[0,1]

∫ 1

0
|k(x, y)| dy ≤ max

(x,y)∈[0,1]×[0,1]
|k(x, y|.

Here C([0, 1]) is equipped with the max-norm denoted by ‖f‖ = maxx∈[0,1] |f(x)|.

A is compact operator on L2:
Set An(f)(x) =

∫ 1
0 kn(x, y) dy for f ∈ L2 and x ∈ [0, 1], where

kn(x, y) = Σn
i=1Σ

n
j=1k(

i

n
,
j

n
)χIi

(x)χIj
(y)
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and

χIi
(t) =

{

1 t ∈ Ii ≡ [ i−1
n

, i
n
)

0 otherwise
i = 1, 2, 3, . . .

Then dimRAn ≤ n, i.e. An is a sequence of finte-rank operators on the Hilbert
space L2 and hence all An are compact. Moreover

‖A − An‖ ≤ ‖k − kn‖L2([0,1]×[0,1]) → 0 as n → ∞

since k is a continuous function on the compact set [0, 1]×[0, 1] and hence uniformly
continuous. Finally since the vector space of compact linear operators on L2 is a
closed set in the vector space of bounded linear operators on L2 we conclude that
A is compact.

A is compact operator on C:
Here we will fix an arbitrary bounded sequence (fn)∞n=1 in C([0, 1]) and prove that
there exists a converging subsequence of (A(fn))∞n=1 in C([0, 1]). To show this we
apply the Arzela-Ascoli theorem. Let M > 0 be constant such that

‖fn‖ ≤ M n = 1, 2, 3, . . .

Then
‖A(fn)‖ ≤ M max

(x,y)∈[0,1×[0,1]
|k(x, y|, n = 1, 2, 3, . . .

Hence (A(fn))∞n=1 is uniformly bounded in C([0, 1]). Remains to prove that (A(fn))∞n=1

is equicontinuous. This follows from the fact that k is a contionuous function on
the compact set [0, 1] × [0, 1] and hence uniformly continuous. By AA theorem
(A(fn))∞n=1 has a subsequence that converges in C([0, 1]).

6. Let Cn, n = 1, 2, 3, . . ., be a sequence of closed convex subsets in a Hilbert space H.
Moreover assume that

C1 ⊃ C2 ⊃ . . . ⊃ Cn ⊃ . . .

and that

C =
∞
⋂

n=1

Cn 6= ∅.

For x 6∈ C, let xn ∈ Cn be defined by

‖x − xn‖ = inf
y∈Cn

‖x − y‖

for n = 1, 2, 3, . . .. Show that xn → x̃ in H and give a geometric interpretation of x̃.

(4p)

Solution: Set d(x, Cn) = infy∈Cn
‖x−y‖ for n = 1, 2, 3, . . . and d(x, C) = infy∈C ‖x−y‖.

We know from the assumptions in the problem and the proposition on ¨the closest point
property¨ that
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(a) ‖x − xn‖ = d(x, Cn) for n = 1, 2, 3, . . .

(b) 0 ≤ d(x, Cm) ≤ d(x, Cn) ≤ d(x, C) < ∞ for all n > m since C is closed convex

(c) d(x, C) > 0 since x 6∈ C

By the parallelogram law for the norm in a Hilbert space it follows that

‖xn − xm‖2 + ‖(x − xn) + (x − xm)‖2 = 2((d(x, Cn))2 + (d(x, Cm))2)

and hence for n > m

‖xn − xm‖2 = 2((d(x, Cn))2 + (d(x, Cm))2 − 2‖x −
1

2
(xn + xm)‖2) ≤

≤ 2((d(x, Cn))2 + (d(x, Cm))2 − 2(d(x, Cm))2).

As limn→∞ d(x, Cn) exists we obtain ‖xn − xm‖ → 0 as n, m → ∞. This implies that
(xn)∞n=1 is a Cauchy sequence in the Hilbert space H and hence converges. Call the limit
point x̃. We note that x̃ ∈ C since Cm is closed and xn ∈ Cm for all n ≥ m and hence
x̃ ∈ Cm.
It remains to give a geometric interpretation of x̃. We observe that

d(x, C) ≤ ‖x − x̃‖ = lim
n→∞

‖x − xn‖ = lim
n→∞

d(x, Cn) ≤ d(x, C).

This gives
‖x − x̃‖ = d(x, C)

and since the closest point in C to x is uniquely defined we have that x̃ must be this
point.
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