## Institutionen för matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet

## Written exam: Functional Analysis TMA401/MMA400 Solutions (first sketches) Date: 2014–10–29

- 1. Consider the differential operator  $L=(\frac{d}{dx})^2$  defined on  $C^2([0,1])$  with boundary conditions u(0)=u'(1) and u'(0)=u(1). Calculate
  - (a) the corresponding Green's function g(x,t), and
  - (b) prove that the boundary value problem

$$\begin{cases} u''(x) = \sin(\sqrt{|u(x^2)| + 1}), & x \in [0, 1], \\ u(0) = u'(1), u'(0) = u(1) \end{cases}$$

has a unique solution  $u \in C^2([0,1])$ .

(4p)

Solution:

Green's function g(x,t): We observe that  $u_1(x) = 1$  and  $u_2(x) = x$  form a basis for  $\mathcal{N}(L)$  where Lu = u''. Set

$$g(x,t) = \theta(x-t)(a_1(t)u_1(x) + a_2(t)u_2(x)) + b_1(t)u_1(x) + b_2(t)u_2(x)$$

where

$$\begin{cases} a_1(t) + a_2(t) = 0 \\ a_2(t) = 1 \end{cases}$$

and

$$\begin{cases} b_1(t) = a_2(t) + b_2(t) \\ b_2(t) = a_1(t) + a_2(t) + b_1(t) + b_2(t) \end{cases}$$

We obtain

$$a_1(t) = -t, \ a_2(t) = 1$$

and

$$b_1(t) = t - 1, \ b_2(t) = t - 2.$$

This gives

$$g(x,t) = \theta(x-t)(x-t) + t - 1 + (t-2)x, \ 0 \le x, t \le 1.$$

Unique solution for the BVP: The problem can be rewritten as

$$u(x) = \int_0^1 g(x, t)(\sin(\sqrt{|u(t^2)| + 1})) dt, \ 0 \le x \le 1.$$

Set

$$T(u)(x) = \int_0^1 g(x,t)(\sin(\sqrt{|u(t^2)|+1})) dt, \ 0 \le x \le 1,$$

where  $u \in C([0,1])$ . Clearly  $T: C([0,1]) \to C([0,1])$ . We assume that C([0,1]) is equipped with the max-norm, i.e.  $||f|| = \max_{x \in [0,1]} |f(x)|$ , which makes C([0,1]) into a Banach space. From Banach's fixed point theorem it follows that the BVP above has a unique solution u if T is a contraction on C([0,1]). For  $u, v \in C([0,1])$  we get

$$|T(u)(x) - T(v)(x)| = |\int_0^1 g(x,t)(\sin(\sqrt{|u(t^2)| + 1}) - \sin(\sqrt{|v(t^2)| + 1})) dt| \le \int_0^1 |g(x,t)| \cdot |\sin(\sqrt{|u(t^2)| + 1}) - \sin(\sqrt{|v(t^2)| + 1})| dt.$$

Apply the mean value theorem to obtain

$$|\sin(\sqrt{|u(t^2)|+1}) - \sin(\sqrt{|v(t^2)|+1})| \le |\sqrt{|u(t^2)|+1} - \sqrt{|v(t^2)|+1}| \le \frac{1}{2}|u(t^2) - v(t^2)| \le \frac{1}{2}|u - v||.$$

This yields

$$||T(u) - T(v)|| \le \frac{1}{2} \max_{x \in [0,1]} \int_0^1 |g(x,t)| \, dt \cdot ||u - v||.$$

By inspection we see that  $g(x,t) \leq 0$  for all  $0 \leq x,t \leq 1$  so

$$j(x) \equiv \int_0^1 |g(x,t)| dt = \int_0^1 g(x,t)(-1) dt, \ 0 \le x \le 1$$

will satisfy j''(x) = -1, j(0) = j'(1), j'(0) = j(1). A calculation gives

$$j(x) = \frac{1}{2} + \frac{3}{2}x - \frac{1}{2}x^2$$

and

$$\frac{1}{2} \le j(x) \le \frac{3}{2}, \ 0 \le x \le 1.$$

Finally we have proved

$$||T(u) - T(v)|| \le \frac{3}{4}||u - v||, \ u, v \in C([0, 1])$$

and the result follows.

2. For  $f \in L^2([0,1])$  and  $x \in [0,1]$  set

$$A(f)(x) = \int_0^1 (x - y)f(y) \, dy.$$

Show that

- (a)  $A(f) \in L^2([0,1])$  for  $f \in L^2([0,1])$
- (b) A is a bounded linear operator on  $L^2([0,1])$ , and
- (c) calculate ||A|| and also
- (d)  $\|(A \frac{1}{2\sqrt{3}}I)^{10}\|$  where I denotes the identity operator on  $L^2$ .

(5p)

Solution: Fix  $f \in L^2([0,1])$ . Using Hölder's inequality (or Schwartz' inequality) we get

$$||A(f)||_{L^{2}}^{2} = \int_{0}^{1} |\int_{0}^{1} (x - y)f(y) \, dy|^{2} \, dx \le \int_{0}^{1} (\int_{0}^{1} |x - y||f(y)| \, dy)^{2} \, dx \le \int_{0}^{1} (\int_{0}^{1} (x - y)^{2} \, dy) (\int_{0}^{1} |f(y)|^{2} \, dy) \, dx = \int_{0}^{1} \int_{0}^{1} (x - y)^{2} \, dy dx \cdot ||f||_{L^{2}}^{2}.$$

This proves (a). (b) is a (boring and) straight-forward calculation. We observe that A is a compact operator and that iA is a self-adjoint (and compact) operator. This implies that

$$||A|| = ||iA|| = \max_{\lambda \text{ eigenvalue to } iA} |\lambda|.$$

We calculate the eigenvalues to A. Here  $A(f)(x) = \lambda f(x)$  implies that f(x) = a + bx and so

$$\lambda(a+bx) = \int_0^1 (x-y)(a+by) \, dy = -\frac{a}{2} - \frac{b}{3} + (a+\frac{b}{2})x.$$

This implies

$$\lambda = \pm i \frac{1}{2\sqrt{3}}$$

and we obtain  $||A|| = \frac{1}{2\sqrt{3}}$ . For (d) we note that iA is a compact self-adjoint operator on  $L^2$ , which is an infinite-dimensional separable Hilbert space and hence by Hilbert-Schmidt theorem there exists a complete ON-sequence  $(e_n)_{n=1}^{\infty}$  of eigenvectors (eigenfunctions) to iA corresponding to the eigenvalues  $(\lambda_n)_{n=1}^{\infty}$ . WLOG we have  $\lambda_1 = \frac{1}{2\sqrt{3}}$ ,  $\lambda_2 = -\frac{1}{2\sqrt{3}}$  and  $\lambda_n = 0$  for  $n = 3, 4, \ldots$  This gives

$$A(f) = -i\sum_{n=1}^{\infty} \lambda_n \langle f, e_n \rangle e_n.$$

We also get

$$(A - \frac{1}{2\sqrt{3}}I)^{10}(f) = \sum_{n=1}^{\infty} (-i\lambda_n - \frac{1}{2\sqrt{3}})^{10} \langle f, e_n \rangle e_n =$$

$$= (-i\frac{1}{2\sqrt{3}} - \frac{1}{2\sqrt{3}})^{10} \langle f, e_1 \rangle e_1 + (i\frac{1}{2\sqrt{3}} - \frac{1}{2\sqrt{3}})^{10} \langle f, e_2 \rangle e_2 =$$

$$= \left(\frac{1}{2\sqrt{3}}\right)^{10} (1+i)^{10} \langle f, e_1 \rangle e_1 + \left(\frac{1}{2\sqrt{3}}\right)^{10} (1-i)^{10} \langle f, e_2 \rangle e_2$$

and

$$||(A - \frac{1}{2\sqrt{3}}I)^{10}(f)||^2 = (\frac{1}{2\sqrt{3}})^{20}[|1 + i|^{20}|\langle f, e_1 \rangle|^2 + |1 - i|^{20}|\langle f, e_2 \rangle|^2] =$$

$$= (\frac{1}{6})^{10}[|\langle f, e_1 \rangle|^2 + |\langle f, e_2 \rangle|^2].$$

By Parseval's formula we conclude that

$$\|(A - \frac{1}{2\sqrt{3}}I)^{10}(f)\| \le (\frac{1}{6})^5\|f\|$$

and also

$$\|(A - \frac{1}{2\sqrt{3}}I)^{10}\| = (\frac{1}{6})^5 (= \frac{1}{7776}).$$

3. Let  $g \in L^2([0,1])$  be a fixed function and consider the equation

$$(x+1)$$
  $\int_0^1 tf(t) dt = f(x) + g(x), \ x \in [0,1]$ 

for  $f \in L^2([0,1])$ . Show that this equation has a unique solution.

(3p)

Solution: For fixed  $g \in L^2([0,1])$  consider the equation

$$f(x) = (x+1) \int_0^1 t f(t) dt - g(x) \quad x \in [0,1]$$
 (1)

Set

$$T(f)(x) = RHS (1)$$

We see that

$$||T(f)||_{L^2} \le |\int_0^1 tf(t) dt| \cdot ||x+1||_{L^2} + ||g||_{L^2}$$

where

$$|\int_0^1 t f(t) \, dt|^2 \le (\int_0^1 |t| |f(t)| \, dt)^2 \le \int_0^1 t^2 \, dt \cdot ||f||_{L^2}^2 = \frac{1}{3} ||f||_{L^2}^2 < \infty$$

and

$$||x+1||_{L^2} = (\int_0^2 (x+1)^2 dx)^{\frac{1}{2}} = \sqrt{\frac{7}{3}} < \infty.$$

Moreover  $T: L^2([0,1]) \to L^2([0,1])$  is a contraction since

$$||T(u) - T(v)||_{L^2} = ||(x+1) \int_0^1 t(u(t) - v(t)) dt||_{L^2} \le$$

$$\leq \sqrt{\frac{7}{3}} \cdot \sqrt{\frac{1}{3}} \|u - v\|_{L^2} = \sqrt{\frac{7}{9}} \|u - v\|_{L^2}.$$

We can now conclude by Banach's fixed point theorem that (1) has a unique solution  $f \in L^2([0,1])$  since  $(L^2([0,1]), \|\cdot\|_{L^2})$  is a Banach space.

4. Let X be a Banach space and assume that  $A \in \mathcal{B}(X,X)$  with operator-norm ||A|| < 1. Show that  $(I+A)^{-1}$  exists as a mapping  $X \to X$  and belongs to  $\mathcal{B}(X,X)$ . Moreover define  $\sigma(A)$ , the spectrum of A, and  $\rho(A)$ , the resolvent set of A, and show that  $\sigma(A)$  is a compact set in C.

(5p)

Solution: See textbook and lecture notes on course homepage

- 5. Assume that  $x_n \rightharpoonup x$  in a Hilbert space  $(H, \langle \cdot, \cdot \rangle)$ . Show that
  - (a)  $A \in \mathcal{B}(H)$  implies that  $A(x_n) \rightharpoonup A(x)$  in H, and that
  - (b)  $A \in \mathcal{K}(H)$  implies that  $A(x_n) \to A(x)$  in H.

(4p)

Solution: See textbook

6. Let X be a Banach space and A a non-empty subset of a normed space Y. Let

$$T: X \times A \to X$$

be a continuous mapping and assume that there exits a  $k \in [0,1)$  such that

$$||T(x_1, y) - T(x_2, y)|| \le k||x_1 - x_2||$$
 for all  $x_1, x_2 \in X$  and  $y \in A$ .

Show that for each fixed  $y \in A$  the mapping T has a unique fixed point  $x_0(y)$  and that

$$x_0:A\to X$$

is a continuous mapping.

(4p)

This means that  $x_n \to x$  in X and  $y_n \to y$  in Y implies that  $T(x_n, y_n) \to T(x, y)$  in X.

Solution: For each fixed  $y \in A$  we obtain by Banach's fixed point theorem that there exists a unique fixed point  $x_0(y)$  for T(x, y).

Assume that  $y_n \to y$  in Y where  $\{y_n : n = 1, 2, 3, \ldots\} \bigcup \{y\} \subset A$ . This gives

$$||x_0(y_n) - x_0(y)|| = ||T(x_0(y_n), y_n) - T(x_0(y), y)|| \le$$

$$\le ||T(x_0(y_n), y_n) - T(x_0(y), y_n)|| + ||T(x_0(y), y_n) - T(x_0(y), y)|| \le$$

$$\le k||x_0(y_n) - x_0(y)|| + ||T(x_0(y), y_n) - T(x_0(y), y)||$$

which implies that

$$||x_0(y_n) - x_0(y)|| \le \frac{1}{1-k} ||T(x_0(y), y_n) - T(x_0(y), y)||.$$

Since

$$||T(x_0(y), y_n) - T(x_0(y), y)|| \to 0$$

as  $y_n \to y$  in Y it follows that  $x_0(y_n) \to x_0(y)$  in X as  $y_n \to y$  in Y.