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1. Show that the BVP
u′′(x) + u(x) + λ cos(1 + u(x)) = 0, x ∈ [0, 1]

u(0) = u′(0) = 0

has a unique solution u ∈ C2([0, 1]) for |λ| < ε, ε small. Give an upper bound on ε.

(4p)

Solution:

Green´s function g(x, t): We observe that u1(x) = cosx and u2(x) = sinx form a
basis for N (L) where Lu = u′′ + u. Set

g(x, t) = θ(x− t)(a1(t)u1(x) + a2(t)u2(x)) + b1(t)u1(x) + b2(t)u2(x)

where {
a1(t) cos t+ a2(t) sin t = 0
−a1(t) sin t+ a2(t) cos t = 1

and {
b1(t) = 0
b2(t) = 0

We obtain
a1(t) = − sin t, a2(t) = cos t.

This gives
g(x, t) = θ(x− t) sin(x− t), 0 ≤ x, t ≤ 1.

Unique solution for the BVP: The problem can be rewritten as

u(x) = −λ
∫ 1

0
g(x, t) cos(1 + u(t)) dt, 0 ≤ x ≤ 1.

Set

T (u)(x) = −λ
∫ 1

0
g(x, t) cos(1 + u(t)) dt, 0 ≤ x ≤ 1,

where u ∈ C([0, 1]). Clearly T : C([0, 1]) → C([0, 1]). We assume that C([0, 1]) is
equipped with the max-norm, i.e. ‖f‖ = maxx∈[0,1] |f(x)|, which makes C([0, 1])



into a Banach space. From Banach´s fixed point theorem it follows that the BVP
above has a unique solution u if T is a contraction on C([0, 1]). For u, v ∈ C([0, 1])
we get

|T (u)(x)− T (v)(x)| = |λ||
∫ 1

0
g(x, t)(cos(1 + u(t))− cos(1 + v(t))) dt| ≤

≤ |λ|
∫ 1

0
|g(x, t)| · | cos(1 + u(t))− cos(1 + v(t))| dt.

Apply the mean value theorem to obtain

| cos(1 + u(t))− cos(1 + v(t))| ≤ ‖u− v‖ for t ∈ [0, 1].

This yields

‖T (u)− T (v)‖ ≤ |λ| max
x∈[0,1]

∫ 1

0
|g(x, t)| dt · ‖u− v‖.

We see that g(x, t) ≥ 0 for all 0 ≤ x, t ≤ 1 so

j(x) ≡
∫ 1

0
|g(x, t)| dt =

∫ 1

0
g(x, t)(+1) dt, 0 ≤ x ≤ 1

will satisfy j′′(x) + j(x) = 1, j(0) = 0, j′(0) = 0. A calculation gives

j(x) = 1− cosx

and
0 ≤ j(x) ≤ 1− cos 1, 0 ≤ x ≤ 1.

Finally we have proved

‖T (u)− T (v)‖ ≤ |λ|(1− cos 1)‖u− v‖, u, v ∈ C([0, 1])

and T is a contraction if

|λ| < 1

1− cos 1
.

2. Let X be a Banach space and A : X → X a bounded linear operator with ‖An‖ < 1 for
some positive integer n. Show that I −A is a bijection and that its inverse (I −A)−1 :
X → X is continuous.

(4p)

Solution: Here An ∈ B(X), since A ∈ B(X), and I −An is an invertible operator on X
by the Neumann-series lemma. In particular, I −An is a bijection on X. From

I −An = (I −A)(I +A+ . . .+An−1)

we conclude that I −A is a surjection and

I −An = (I +A+ . . .+An−1)(I −A)
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implies that I −A is an injection. Hence I −A is a bijection. Moreover from
(I −An)−1 ∈ B(X) we obtain

I = (I −A)(I +A+ . . .+An−1)(I −An)−1 = (I +A+ . . .+An−1)(I −An)−1(I −A)

since
(I −An)−1(I −A) = (I −A)(I −An)−1,

which follows from (I −An)−1 = Σ∞k=0A
kn, and so

(I −A)−1 = (I +A+ . . .+An−1)(I −An)−1 ∈ B(X).

This gives that (I −A)−1 is a bounded linear operator on X and hence continuous.

3. Let E be a Hilbert space and A : E → E a bounded linear and self-adjoint operator
that satisfies A3 = A2. Show that A is an orthogonal projection operator.

(4p)

Solution: A bounded linear operator A on a Hilbert space E is an orthogonal projection
operator if and only if A is self-adjoint and A2 = A. Hence it remains to show that
A2 = A. From A3 = A2 it follows that A4 = A3 = A2 and hence

(A2 −A)2 = A4 − 2A3 +A2 = 0.

Set T = A2 −A. We conclude that T ∗ = T , since

T ∗ = (A2 −A)∗ = (A2)∗ −A∗ = (A∗)2 −A∗ = A2 −A = T,

and hence T ∗T = 0. But this implies that

0 = 〈T ∗T (x), x〉 = 〈T (x), T ∗∗(x)〉 = 〈T (x), T (x)〉 = ‖T (x)‖2

for all x ∈ E. Hence T (x) = 0 for all x ∈ E which gives T = 0. This shows A2 = A.

4. Let E be a Hilbert space and (xn)∞n=1 a weakly converging sequence in E. Show that

sup
n=1,2,3,...

‖xn‖ <∞.

Give an example where (xn)∞n=1 converges weakly to x but

‖xn‖ 6→ ‖x‖ as n→∞.

What can be said if (xn)∞n=1 converges weakly to x and

‖xn‖ → ‖x‖ as n→∞?

(5p)
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Solution: See textbook and lecture notes on course webpage.

5. Let Pn denote the vector space of all polynomials of degree at most n on R, where n is
a positive integer. Set

‖p‖ = Σn
k=0|p(k)|, p ∈ Pn.

Show that (Pn, ‖ · ‖) is a Banach space.

(4p)

Solution: A sketch: Clearly Pn is a vector space since it is a function space on R so it
remains to show that

‖p‖ = Σn
k=0|p(k)|, p ∈ Pn

defines a norm on Pn and that this is complete. To show that ‖p‖ = 0 implies p = 0 we
observe that a non-trivial polynomial of degree at most n can at most have n distinct
zeros. The other norm axioms are easy to verify for ‖ · ‖. To show that (Pn, ‖ · ‖) is a
Banach space we observe that Pn is a finite-dimensional vector space (dim(Pn) = n+1)
and that all norms for finite-dimensional vector spaces are equivalent. For instance
|||p||| = Σn

k=0|ak|, where p(x) = Σn
k=0akx

k, defines a another norm for Pn and it easy to
show with this norm that every Cauchy sequence in Pn converges.

6. Let E be a separable Hilbert space and A : E → E a linear compact operator. Show
that for every ε > 0 there exists a finite-rank operator B such that ‖A−B‖ < ε.

(4p)

Solution: A sketch: Let (xn)∞n=1 be an ON-basis for E and for N = 1, 2, 3, . . . define

AN (x) = A(ΣN
n=1〈x, xn〉xn) = ΣN

n=1〈x, xn〉A(xn), x ∈ E.

Then AN defines a sequence of linear finite-rank operators on E (dimR(AN ) ≤ N for
each N) such that

‖A−AN‖ → 0 as N →∞.

Here it is crucial that A is a compact operator and its convergence improving property is
used (every weakly converging sequence in E is mapped by A onto a strongly converging
sequence in E).
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