MATEMATIK Chalmers tekniska högskola och Göteborgs universitet

Functional Analysis ENM, TMA401/ Applied Functional Analysis GU, MMA400, Date: 2013-01-17 (4 hours)

Aids: Just pen, ruler and eraser. Teacher on duty: Dawan Mustata, 0703-088304

Note:	Write your name and personal number on the cover.
	Write your code on every sheet you hand in.
	Only write on one page of each sheet. Do not use red pen.
	Do not answer more than one question per page.
	State your methodology carefully. Write legibly.
	Questions are not numbered by difficulty.
	Sort your solutions by the order of the questions.
	Mark on the cover the questions you have answered.
	Count the number of sheets you hand in and fill in the number on the cover.
	To pass requires 10 points.

1. Show that the following boundary value problem

$$\left\{ \begin{array}{ll} u''(x)+u'(x)+\arctan(u(x^2))=0, \ x\in[0,1],\\ u(0)=u(1)=1,\\ u\in C^2([0,1]). \end{array} \right.$$

has a unique solution.

(4p)

2. Set

$$Af(x) = \int_0^{2\pi} \sin^2(x-t)f(t) \, dt, \ x \in [0, 2\pi].$$

Show that A is a linear bounded and compact operator on the Banach space $L^2([0, 2\pi])$. Calculate the operator norm ||A||.

(4p)

3. Let M be a dense set in [0,1] and let $f_n : [0,1] \to \mathbb{R}$, $n = 1, 2, 3, \ldots$, be a sequence of continuously differentiable functions that satisfies

$$\sup_{x \in [0,1]} |f'_n(x)| \le 1, \ n = 1, 2, 3, \dots$$

Show that the sequence $(f_n)_{n=1}^{\infty}$ converges in $(C([0,1]), \|\cdot\|)$, where $\|f\| = \sup_{x \in [0,1]} |f(x)|$, if $\lim_{n \to \infty} f_n(x)$ exists for every $x \in M$.

(4p)

4. State and prove the Banach-Steinhaus theorem.

(5p)

5. Let $A \in \mathcal{B}(X, X)$, where X is a Banach space, with ||A|| < 1. Show that I + A is an invertible operator on X.

(4p)

6. Let M be a subset of a Hilbert space H. Show that $(M^{\perp})^{\perp}$ is the smallest closed subspace of H that contains M.

(4p)

For information on the announcement of results see the course homepage where also solutions to the problems will be presented.

GOOD LUCK! PK