
MATEMATIK
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1. Show that the BVP{
u′′(x) + sin2(u(x)) = 1, 0 ≤ x ≤ 1
u(0) = u(1) = 0

has a unique solution u ∈ C2([0, 1]).

(4p)

2. Let (xn)∞n=1 be a converging sequence in a normed space. Call the
limit x. Set

yn =
x1 + 2x2 + 3x3 + . . .+ nxn

n2
, n = 1, 2, 3, . . .

Prove that (yn)∞n=1 converges and find the limit.

(4p)

3. Let H be a Hilbert space with an orthonormal basis (en)∞n=1. Let
T ∈ B(H) be given by

T (Σ∞
n=1anen) = Σ∞

n=1λnanen.

Show that T is unitary1 if and only if |λn| = 1 for all n.

(4p)

1T is called unitary if T ∗T = TT ∗ = I



4. State and prove the Hilbert-Schmidt theorem. Propositions and
Lemmas used in the proof must be properly stated but need not
be proven.

(5p)

5. Let X be a Banach space, Y normed space and T : X → Y a
bounded linear mapping. Assume that there exists a C > 0 such
that

‖x‖ ≤ C‖T (x)‖ for all x ∈ X.
Show that ImT , that is the range of T , is also a Banach space,
and hence in particular a closed subspace of Y .

(4p)

6. Let T be a compact self-adjoint operator on a Hilbert space H.
Show2 that

sup{|λ| : λ ∈ σ(T )} = ‖T‖.

(4p)

For information on the announcement of results see the course homepage where
also solutions to the problems will be presented.

GOOD LUCK! PK

2The fact that there exists an eigenvalue λ to T with absolute value equal to the operator-norm
of T must be proven.
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