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1. Let f ∈ C([0, 1]) and λ ∈ R with |λ| < e(e − 1). Show that the
boundary value problem u′′ + u′ + λ|u(x)| = f(x), x ∈ [0, 1]

u(0) = u(1) = 0

has a unique solution u ∈ C2([0, 1]).

(4p)

2. Show that the mapping A : C([0, 1])→ C([0, 1]) given by

A(f)(x) =

∫ x

0

f(y) dy −
∫ 1

x

f(y) dy, x ∈ [0, 1]

is a bounded linear mapping and calculate the operator norm ‖A‖.

(4p)

3. Show1 that the integral operator A : C([0, 1]) → C([0, 1]) defined
by

A(f)(x) =

∫ 1

0

k(x, y)f(y) dy, x ∈ [0, 1],

where k(x, y) ∈ C([0, 1]× [0, 1]) is strictly positive, has a positive
eigenvalue with an strictly positive eigenfunction.

(4p)

1Hint: Use Schauder’s fixed point theorem



4. Let E be a separable infinite-dimensional Hilbert space and let A
be a compact self-adjoint operator on E. Prove that there exists
a complete ON-sequence of eigenvectors of A in E, i.e. prove the
spectral theorem for compact self-adjoint operators. The Hilbert-
Schmidt theorem used in the proof should be stated and proved
but other proposition used in the proof need not be proven.

(5p)

5. (a) Let E be a Hilbert space. Give the definition of a compact
operator A on E.

(b) Let A be a bounded linear operator a Hilbert space E. Show
that A is a compact operator if A∗A is a compact operator on
E.

(1+3p)

6. Let (xn)∞n=1 be a bounded sequence in a Hilbert space E. Show
that there exists a subsequence (xnk

)∞k=1 of (xn)∞n=1 that converges
weakly in E.

(4p)

For information on the announcement of results see the course homepage where
also solutions to the problems will be presented.

GOOD LUCK! PK
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