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1. Show that the boundary value problem1 u′′(x) + u(x) + arctan(u(x)) = x, x ∈ [0, π
2
]

u(0) = 0, u(π
2
) = π

2

has a unique solution u ∈ C2([0, π
2
]).

(4p)

2. Let C([0, 1]) be the vector space equipped with the max-norm. Let
Tc be the bounded linear operators on C([0, 1]) defined by

Tc(f)(x) = |x− c| · f(x), x ∈ [0, 1],

where c is a real number. Show that the range R(Tc) is closed if
and only if c 6∈ [0, 1].

(4p)

3. Let T ∈ B(X,X) where X is a Banach space. Show that

(a) Σ∞n=0
Tn

n!
converges in B(X,X).

(b) If ‖T‖ < ln 2 then Sm = Σm
n=0

Tn

n!
is invertible in B(X,X) for

m = 1, 2, 3, . . .

(1+3p)

1Observe that the boundary conditions are not homogeneous.



4. State and prove the Lax-Milgram theorem.

(5p)

5. Let k : [0, 1]× [0, 1]→ R be continuous. Set

T (f)(x) =

∫ 1

0

k(x, y)f(y) dy, x ∈ [0, 1]

for continuous functions f on [0, 1]. Show that

(a) T ∈ B(C([0, 1]), C([0, 1])) where C([0, 1]) is equipped with the
max-norm.

(b) ‖T‖ = maxx∈[0,1]
∫ 1

0
|k(x, y)| dy

(2+2p)

6. Let ‖ · ‖ be a norm on a real2 vector space X. Show that the
following statements are equivalent:

(a) ‖ · ‖ is induced3 by an inner product on X.

(b) ‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for all x, y ∈ X.

(4p)

For information on the announcement of results see the course homepage where
also solutions to the problems will be presented.

GOOD LUCK! PK

2The statement is also valid for complex vector spaces.
3This means that there exists an inner product 〈·, ·〉 such that ‖x‖ =

√
〈x, x〉 for all x ∈ X.
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