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PrefaeThis ompendium is meant as a terse replaement for, i.a., mathematiallyless suessful parts (Chapter 5, for example) of the book Braewell R., TheFourier Transform and Its Appliations, MGraw-Hill, 2000.In part, we transend this book: the results named after Paley-Wiener andBohner-Shwartz are inluded together with some theory of generalized fun-tions: tempered distributions.We mention two books for further study of distributions.Folland G. B., Fourier Analysis and its Appliations, Wadsworth & Brooks,1992Hörmander L., The Analysis of Linear Partial Di�erential Operators part I,seond edition, Springer-Verlag, 1990The �rst book is fairly easy to read. The seond ontains a more ompre-hensive aount. Both are available in the library at the Department, as well asmany more on the subjet.Our disposition is as follows. We start with the lass S of in�nitely dif-ferentiable futions with rapid deay at in�nity. The Fourier transform is anisomorphism on S. Then we disuss the dual of S, S 0, whih are generalizedfuntions alled tempered distributions. As appliations of the alulus withinthis framework, we give relatively straight-forward proofs of Poisson's SummationFormula, the Sampling Theorem, onvergene of Fourier series, and the CentralLimit Theorem. We haraterize also the funtions whih have no frequenyontent above a �xed value (Paley-Wiener), and the onnetion between auto-orrelation funtions and probability measures (Bohner-Shwartz). We brie�ydisuss the Radon transform (used in omputer tomography and several otherontexts), antennas, and thin lenses. This is followed by some issues pertainingto the transition between a ontinuous variable and its �nite disrete ounterpartwhih an be handled by a omputer.Finally we sketh the idea behind the wavelet transform � a variant of (win-dowed) Fourier transform whih is beoming widely used in diverse appliations(storing �ngerprints for example).Mainly, we will use the notation of Braewell. However, all results have ver-sions in more than one dimension, and the proofs in higher dimensions do not,in general, require any additional ideas.In many plaes in the text, there are exhortations like 'verify!'. This meansthat some, mostly minor and tehnial, details have been left out. The purposewith these gaps is above all to make the ideas stand out more learly; most ofthe gaps will be disussed during the ourse.i
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1 Generalized FuntionsWe will expand the onept funtion, and then oneive a funtion f as the valuesof Z 1�1 f(x)'(x) dxas ' runs through a lass of test funtions. Note that this di�ers from the usualway of looking at a funtion as, e.g., a graph.This setion starts with the test funtions, whih make up the lass S.We then treat the tempered distributions, S 0, an expansion of the funtiononept, whih simpli�es alulations with, i.a., sampled signals.1We end this setion with some appliations. Among other, we give simpleproofs of the Sampling Theorem, the Poisson Summation Formula. We alsodisuss the onnetion between Fourier transforms and Fourier series.When do distributions ome more spei�ally into play?Mathematial tehniques are used to failitate manipulation of mathematialmodels, whih �t 'reality' more or less, as the ase may be. From signal proessingwe take two examples where distributions help. (Many appliations an be foundin the theory of partial di�erential equations; f. Example 2 in 2.2 below.)1. We seek a signal of whih the 'moving averages' are known (or perhaps themoving averages of those). Put di�erently, we seek the solution f to theequation 1(�1=2;1=2) � f = g (1(�1=2;1=2) � 1(�1=2;1=2) � f = h).2. Consider a low-pass �ltered signal: no frequeny ontent above the 'Nyquistfrequeny'. Could this signal have maxima as lose to eah other as we wish,or is there a minimal distane determined by the Nyquist frequeny?1.1 The Funtion Class SDe�nition 1.1.1 The lass S onsists of omplex-valued funtions f of (one)real variable, whih are in�nitely di�erentiable and satisfysupx jx�D�f(x)j <1for eah hoie of non-negative integers �; �.In other words: the funtion and all its derivatives deay faster than any powerfuntion at in�nity.1 Distributions were developed as an aid to the study of linear partial di�erential equationsand their solutions. 1



Example 1 Let f(x) = e�ax2 with a > 0. Then f 2 S holds, whih may beveri�ed diretly from the de�nition.Example 2 Verify also that f 2 S when f is given by (draw a piture!)f(x) = 8>><>>: 0 (x � a)e� 1(x�a)2� 1(x�b)2 (a < x < b)0 (b � x)Example 3 Let f be the funtion in the previous example with a = �b andnormalized to have integral 1. Let g be an integrable funtion.2 De�ne theonvolution (" > 0) g"(x) = Z 1�1 1"f(x� y" )g(y) dyThen g" is in�nitely di�erentiable, and onverges to g almost everywhere(verify!).De�nition 1.1.2 The Fourier transform of a funtion f in S we denote byf̂ or Ff . It is given by f̂(s) = Z 1�1 e�2�isxf(x) dxThe properties whih make the lass S suitable for Fourier transforms are on-tained in the next lemma.Lemma 1.1.1 Let f 2 S. Then holds for non-negative integers �; �1. g(x) = x�D�f(x)) g 2 S�S is losed under di�erentiation and under multipliation by polynomials�2. f̂ 2 S�S is losed under Fourier transformation�Proof: To prove the last property, it su�es to observe the following two equalities(verify this!). Firstly, di�erentiation under the integral sign givesDf̂(s) = Z 1�1 e�2�isx(�2�ix)f(x) dx2 Lebesgue integrable for example. If this onept is unfamiliar, read 'ontinuous and Rie-mann integrable' and 'everywhere'. 2



The operation is allowed, sine the resulting integral is absolutely and uniformlyonvergent. Thus we have sups jD�f̂(s)j < 1 for eah � � 0. Seondly, we getby a partial integration 2�isf̂(s) = Z 1�1 e�2�isxDf(x) dxwhih yields sups js�f̂(s)j <1 for every � � 0.Verify the �rst property!
Example 4 Put f(x) = e��x2. Then f̂ = f . We verify this:Df̂(s) = Z 1�1 e�2�isx(�2�ix)e��x2 dx= i Z 1�1 e�2�isxDf(x) dx= �2�sf̂(s)whih implies f̂(s) = e��s2 sine f̂(0) = R f(x) dx = 1.We will now show the key result: a funtion in S an be retrieved from itsFourier transform.Theorem 1.1 (Fourier's Inversion Formula) Let f 2 S. Then holdsf(x) = Z 1�1 e2�isxf̂(s) dsRemark 11. The formula is valid in the distribution sense under weaker assumptions,e.g., for f 2 L2 (square integrable). Cf. Theorem 1.3 below.2. The formula may be written F2f(x) = f(�x), whih means that foursuessive Fourier transformations produe the original funtion.We write �f(x) := f(�x); that is, F2f(x) = �f(x).3. Lemma 1.1.1 and Theorem 1.1 show that the Fourier transform is an iso-morphism on S. (This inludes the topology; see the proof of Proposition1.2.2. below.) 3



Proof: It su�es to onsider the ase x = 0 (verify!).Suppose �rst that f(0) = 0. We will then show that R f̂(s) ds = 0. Putg(x) = f(x)=x and g 2 S follows (verify!). Furthermore �2�if̂(s) = Dĝ(s) andthus �2�i Z f̂(s) ds = Z Dĝ(s) ds = 0whih proves the theorem in the ase f(0) = 0.If f(0) 6= 0, write f(x) = f(x)� f(0)e��x2 + f(0)e��x2Taking Fourier transform, integrating, and using what we just showed, we getZ f̂(s) ds = f(0)beause the inversion formula holds for e��x2 aording to Example 4 above. Theproof is done.Remark 2 The proof displays a tehnique whih is frequently used: You splitthe proof into two steps. First you show the statement for f 2 S with f(0) = 0,that is, for a subspae of S. Then a general funtion is split into a sum of twoterms: one term in the subspae and the behaviour of the other term (not inthe subspae) is also known. This then gives the general statement in a linearsetting.1.2 The Class S 0We will now desribe a generalization of the funtion onept, named tempereddistribution,3 whih allows a uni�ed treatment of ideas like point mass, pointharge, impulse, shot signal, dipole moment et.Test funtions will be denoted by Greek letters, for example ', in what follows,while distributions will be written with apitals in italis, e.g., T . The omplexnumbers we denote C (in boldfae). Furthermore we use the notation ('1; '2 inS) < '1; '2 > := Z 1�1 '1(x)'2(x) dxNote that < � ; � > is a salar produt only for real-valued funtions.De�nition 1.2.1 A linear mappingT : S 3 ' �! T (') 2 C3 The adjetive 'tempered' denotes here 'tempered (moderate) growth'. See Example 8below. 4



is alled a tempered distribution if, for any sequene of test funtions 'n 2 Swith the property limn!1 supx jx�D�'n(x)j = 0for every hoie of non-negative integers �; �, holds thatlimn!1T ('n) = 0The lass of tempered distributions is written S 0; and we often write T (') =:< T; ' >; in Example 5 below the reason for this will beome apparent. Asequene of test funtions with the property above is said to onverge to 0 in S.An example of suh a sequene is 'n(x) = e�x2=n with n = 1; 2; : : : . Verifythat 'n ! 0 i S.Verify also that a tempered distribution is determined by its values on real-valued test funtions only.Example 5 Let jf(x)j=(1 + x2)� be integrable for some � and putT : S 3 ' �!< f; ' >= Z 1�1 f(x)'(x) dx 2 CWe verify that the mapping T is a tempered distribution. The linearity is obvious.Take a sequene 'n ! 0 i S. Then we getj Z 1�1 f(x)'n(x) dxj � Z 1�1 jf(x)=(1 + x2)�j dx supx j(1 + x2)�'n(x)j ! 0whih �nishes the veri�ation. Note that f ould be a polynomial here for exam-ple.The distribution T in Example 5 is identi�ed with the funtion f . Thisidenti�ation has often proved di�ult to get used to.The funtion f is thus here not oneived of as the values f(x) as x varies,but as the values < f; ' > as ' varies over S. We write T = f in S 0.Verify that, if f and g both are ontinuous funtions and f = g in S 0 ('equalas distributions'), that is < f; ' >=< g; ' > for all ' 2 S, then f(x) = g(x)holds for all x.In the next example we treat a frequently used tempered distribution, theÆ-distribution.4Example 6 Consider the mappingT : S 3 ' �! '(0) 2 CVerify that T is a tempered distribution as was done in Example 5.4 The notation derives from the name P A M Dira.5



Remark 3 We ounsel against the usage of the (abusive) notation like 'Æ-funtion', 'Æ(x)', 'R Æ(x)'(x) dx', and so on. These suggest the erroneous on-eption that the Æ-distribution has point values like funtions, and introdueunneessary possibilities for misunderstanding. See also the Struture Theorem1.2 below.Example 7 Put fn(x) = n1=2e�n�x2 with n = 1; 2; : : : . Verify that, fn 2 S 0and fn(')! '(0) = Æ(')This may be written fn ! Æ in S 0. We an thus say that fn approximate Æ.Example 8 Continuous funtions whih are not tempered distributions growtoo fast at in�nity: onsider ex, for example. Take '(x) = e�(1+x2)1=2 . Obviously,' 2 S but < e(�); ' > diverges, and so e(�) does not belong to S 0.5Example 9 In signal proessing, the most widely used tempered distributionis the pulse train Pn Æn, where Æn(') = '(n), that is, Æ translated to the integern.6 Se Remark 7 below.Verify that the pulse train, whih is the mappingT : S 3 ' �!Xn '(n) 2 Cis a tempered distribution. (Note that < Pn Æn; ' > := Pn '(n).)The operations di�erentiation, multipliation by a funtion, translation, andothers, must be de�ned in suh a way that they oinide with the usual oneswhen the distribution is a funtion. For example, if f 2 S and ' 2 S then< Df; ' >= Z Df(x)'(x) dx = � Z f(x)D'(x) dx = � < f;D' >The other de�nitions below are motivated similarly.Translation is denoted f� (x) := f(x� �); � real. Multipliation by a funtion gis de�ned under the weakest assumption on g for whih the impliation ' 2 S )g' 2 S holds true.De�nition 1.2.2 Let T 2 S 0; ' 2 S, and let g be an in�nitely di�erentiablefuntion with the property that, given the integer � � 0 there is an integer � suhthat supx(1 + jxj)�jD�g(x)j <1.< DT; ' > := � < T;D' >< gT; ' > := < T; g' >< T� ; ' > := < T; '�� >5 Notation like e(�), i.e., with the variable suppressed, is used to diminish the risk formisunderstandings, in partiular when we later disuss multipliation of a tempered distributionby a funtion.6 Braewell's notation with the Russian letter III, 'shah', is awkward espeially in onnetionwith hanges of variable, and we will not use it.6



Polynomials are thus allowed as g in the de�nition, but not ex, for example.The objets de�ned should be tempered distributions, whih is the ontent of thenext proposition.Proposition 1.2.1 For T 2 S 0 and with g as in De�nition 1.2.2 holdDT 2 S 0; gT 2 S 0 and T� 2 S 0.Proof: We prove the statement about gT , and leave the other two as an exerise.Linearity is obvious. Take now a sequene 'n ! 0 in S,< gT; 'n >=< T; g'n >But, given �; �, we havesupx (1 + jxj)�jD�(g(x)'n(x))j � CX��� supx (1 + jxj)�� jD�'n(x)jwhih implies g'n ! 0 in S, and gT 2 S 0 follows.Proposition 1.2.1 an be rephrased: The lass S 0 is losed under di�erentia-tion, under multipliation with smooth funtions whih have tempered growth atin�nity, and under translation.Note that polynomials satisfy the onditions for g in Proposition 1.2.1.We will now indiate a representation of a general tempered distribution interms of (distribution) derivatives of ontinuous funtions. The example followingthe theorem provides an illustration.Theorem 1.2 (The Struture Theorem) Let T 2 S 0. Then ontinuous fun-tions fj, j = 1; 2; : : :, and non-negative integers �j exist, suh that (in S 0)T =Xj D�jfjProof: See Appendix.Example 10 For f(x) = x+, the ramp funtion, and the Heaviside funtion(step funtion) H, D2f = DH = Æ in S 0 holds. We verify this. (' 2 S)< D2f; ' > = < f;D2' >= Z 10 xD2'(x) dx= � Z 10 D'(x) dx (=< DH;' >)= '(0) =< Æ; ' >7



Example 11 Let f be the funtion f(x) = �x�3=2H(x)=2, where H again isthe Heaviside funtion. De�ne< T; ' > := lim�!0+f�12 Z 1� x�3=2'(x) dx + ��1=2'(0)gT is alled the �nite part of f .Verify that the ontinuous funtion g = 2(�)1=2H 2 S 0, that Dg = (�)�1=2H,and that D2g = T in S 0 ! This motivates the de�nition of T . The added termsin the �nite part of a funtion ome from a series expansion of the test funtion'(x).We are now ready to de�ne the Fourier transform of a tempered distribution.Again, the de�nition is motivated by a formula for funtions, the PlanherelFormula (f 2 S; ' 2 S)Z Ff(x)'(x) dx = Z f(x)F'(x) dxThe formula is veri�ed diretly by hanging the order of integration. Note thespeial ase ' = (f̂)�, whih is alled Parseval's Formula:7Z jf̂(s)j2 ds = Z jf(x)j2 dxDe�nition 1.2.3 Take T 2 S 0. The Fourier transform of T , T̂ = FT , isgiven by < T̂ ; ' > :=< T; '̂ >Proposition 1.2.2 T 2 S 0 implies T̂ 2 S 0.Proof: Linearity is obvious. Take test funtions 'n ! 0 in S and< T̂ ; 'n >=< T; '̂n >If we have '̂n ! 0 in S, we are done. We have bothsups jD'̂n(s)j � C Z jx'n(x)j dxand sups js'̂n(s)j � C Z jD'n(x)j dxBut for the �rst integrand holds for examplejx'n(x)j � (1 + x2)�1 supx (1 + x2)2j'n(x)jA similar argument for the last integrand gives '̂n ! 0 in S, and the proof isomplete. (Verify the last estimate!)7 It is alled Rayleigh's Theorem in Braewell's book, but this naming is unommon.8



Example 12 It is immediately seen that (� � 0)FD�Æ = (2�i(�))�F(�2�i(�))� = D�ÆWe verify the �rst statement for � = 0:< FÆ; ' >=< Æ;F' >= F'(0) = Z '(x) dxThe rest is left as an exerise.The entral result is Fourier's Inversion Formula, where �T is de�ned by< �T ; ' > :=< T; �' >Verify that �T 2 S 0.Theorem 1.3 (Fourier's Inversion Formula) Let T 2 S 0. Then FFT = �Tholds.Proof: For ' 2 S we have the same formula proved in Theorem 1.1, and so< F2T; ' > = < FT;F' >= < T;FF' >= < T; �' >= < �T ; ' >The proof is omplete.The Fourier transform e�ets of di�erentiation, translation, and multipliationby ertain funtions in Proposition 1.2.1, is next. Reall the orresponding rulesfor funtions in S !Proposition 1.2.3 The Fourier transform is linear. Let T 2 S 0, and assumethat S is an in�nitely di�erentiable funtion, suh that, given � � 0, � exists,and supx(1 + jxj)�jD�S(x)j <1.The following equalities hold.F(DT ) = 2�i(�)FT F(�2�i(�)T ) = DFTF(ST ) = FS � FT F((FS) � T ) = �SFTF(T�) = e�2�i�(�)FT F(e2�i�(�)T ) = (FT )�where the onvolutions are de�ned in the proof below. Furthermore,D(FS � T ) = DFS � T = FS �DT9



Proof: The linearity together with the �rst and the third equalities are diretlyveri�ed from the de�nition. Likewise, S 2 S 0. (Perform the veri�ations!)We will now de�ne onvolution of a general tempered distribution FT 2 S 0with a tempered distribution FS 2 S 0 with the property stated. The produtST is in S 0, and we de�ne FS � FT by F(ST ) =: FS � FT ; the Fouriertransform determines the tempered distribution ompletely. The seond equalityon that line follows from the de�nition (the �rst equality). The ommutativity ofonvolution, translation, and di�erentiation (the last line of the statement) followsafter Fourier transformation of what we just have shown, and sine multipliationby ertain funtions is assoiative in S 0 when it is permitted.Now we present a result, whih is basi in most appliations. It provides theanswer to the question What is the result after a division by x ?Lemma 1.2.1 8 Let T 2 S 0, and assume that (�)T = 0. Then there is a omplexnumber a suh that T = aÆPerforming a Fourier transform in the lemma produes:Consequene 1.2.1 Let T 2 S 0, and assume that DT = 0. Then there is aomplex number a suh that T = a.Proof of Lemma 1.2.1: Assume that  2 S with  (0) = 0. For '(x) =  (x)=xthen ' 2 S holds (verify!), andT ( ) = T ((�)') = (�)T (') = 0Take now ' 2 S arbitrarily, �x '1 2 S with '1(0) = 1, and write'(x) = '(x)� '(0)'1(x) + '(0)'1(x)this yields ('(0)� '(0)'1(0) = 0)T (') = '(0)T ('1) = T ('1)Æ(')whih proves the lemma with a = T ('1).8 This result is not immediately generalized to dimension 2 and higher.10



Example 13 Let H be the Heaviside funtion. ThenFH = 12�i(�) + 12Æwhere < 12�i(�) ; ' >= lim�!0+ Zjxj>� 12�ix'(x) dx(verify that (2�i(�))�1 2 S 0 !).We show that FH1 = (2�i(�))�1with H1 = H � 1=2.9 Reall thatDH1 = DH = Æwhih implies 2�i(�)FH1 = 1The lemma gives FH1 = (2�i(�))�1 + aÆNote that FH1 and (2�i(�))�1 both are odd ((FH1)� = �FH1) while Æ is even(verify!). Thus we infer a = 0, and the proof is done.Remark 4 The theory needed to answer the two questions posed (on page 1)as spei� examples when distributions are useful has now been desribed.1.3 Some AppliationsWe will apply the theory developed in the foregoing to show key mathematialresults used for signal proessing.Theorem 1.4 (Poisson's Summation Formula) Let ' 2 S. Then1Xk=�1 '̂(s+ k) = 1Xk=�1'(k)e�2�iksor, equivalently, Ff 1Xk=�1 Ækg = 1Xk=�1 Æk9 2H1 =: sign , where sign is alled the sign funtion.11



We give �rst a proof in dimension 1. Using Theorem 1.5 (whih has otherelementary proofs using partial sums) below, we return (after Proposition 1.3.2)and give a seond proof, that works unaltered in higher dimensions.Proof: We have ( (Pk Æk)1 = Pk Æk (period 1)e2�i(�)Pk Æk = Pk Æk (e2�i(�)Æk = Æk)A Fourier transformation gives( e2�i(�)FPk Æk = FPk Æk((FPk Æk)1 =) (FPk Æk)�1 = FPk ÆkLemma 1.2.1 now gives onstants ak, whih all must be equal by the periodiity(translation property), so that FXk Æk = aXk ÆkThis equality applied to the test funtion e��x2 , whih is its own Fourier trans-form, gives a = 1. This �nishes the proof.
Example 14 Let ' 2 S with F'(s) = 0; jsj � 1. ThenXn '(n) = Z '(x) dxThe integral an apparently be replaed by a retangular approximation enteredat the integers in this ase!Now a result onerning the onvergene of Fourier series. A omparisonbetween the proof we give and an elementary one might be pro�table.Theorem 1.5 Suppose that the funtion f has period 1 and is twie ontinuouslydi�erentiable. Then f(x) =Xk ke2�ikxholds for all x, where the Fourier oe�ients k are given by (k integer)k = Z 10 e�2�ikxf(x) dx12



Proof: Two partial integrations give k = O(k�2); jkj ! 1. The Fourier series1Xk=�1 ke2�ikxthen onverges absolutely and uniformly. The sum is thus a ontinuous funtionwith period 1 and so belongs to S 0.It su�es to show equality in S 0, sine both f and the Fourier series areseparately ontinuous funtions. Equality in S 0 is equivalent tof̂ =Xk kÆkPoisson's Summation Formula gives (' 2 S)< f̂; ' >= Z f(x)'̂(x) dx = Z 10 f(x)Xk '̂(x + k) dx= Z 10 f(x)Xk e�2�ikx'(k) dx= Xk '(k) Z 10 f(x)e�2�ikx dx= Xk k'(k) =<Xk kÆk; ' >whih thus onludes the proof.Now to a onnetion between Fourier transforms and Fourier series.Proposition 1.3.1 For T 2 S 0 with period 1FT = Xk kÆkT = Xk ke2�ik(�)holds with some numbers k whih, when T is for example an integrable funtion,are the usual Fourier oe�ients.Proof: Verify the formulas! Assume now the formulas to hold, and that T = f ,where f is integrable. Take ' 2 S with '(k) = 1 and '(x) = 0; jx � kj > 1=2,and we get by Poisson's Summation Formulak = FT (') = T (F')= Z 1�1 f(x)F'(x) dx13



= 1Xn=�1 Z 10 f(x)F'(x+ n) dx= Z 10 f(x) 1Xn=�1F'(x+ n) dx= Z 10 f(x) 1Xn=�1'(n)e�2�inx dx= Z 10 f(x)e�2�ikx dx
Proposition 1.3.2 (Disrete Fourier Transform: DFT) Suppose that T̂ 2S 0 has period 1, and that T also is periodi. Then T has an integer period N andT = 1Xk=�1 tkÆkT̂ = 1Xk=�1 kÆk=NBoth sequenes have period N with the relationsNk = NXl=1 tle�2�ikl=N (k = 1; :::; N)tl = NXk=1 ke2�ikl=N (l = 1; :::; N)Proof: That T̂ has period 1 gives by the previous PropositionT = 1Xk=�1 tkÆkHere it is evident that if T also has a period, this must be an integer N . Thisimplies that tk+N = tk for all k and yields in its turnT̂ = 1Xk=�1 kÆk=NSine T̂ has period 1 it follows that k+N = k for all k.14



We now alulate T̂ with the aid of the expression for T .FT = F 1Xk=�1 tkÆk= F 0� NXk=1 tk 1Xl=�1 Æk+lN1A= NXk=1 tke�2�ik(�)N�1 1Xl=�1 Æl=N= 1Xl=�1 N�1 NXk=1 tke�2�ikl=N! Æl=NThe relation Nk = PNl=1 tle�2�ikl=N (k = 1; :::; N) now follows. Verify theremaining relation, and thatF 1Xl=�1 ÆlN = N�1 1Xl=�1 Æl=NWe now return to the Poisson Summation Formula, and give an alternativeproof whih works unaltered in higher dimensions.Proof of Theorem 1.4; alternative: Note that the funtionPk '̂(s+k) is in�nitelydi�erentiable, and has period 1. We get by Theorem 1.5 (whih an be proveddiretly without invoation of Poisson's Summation Formula: no irular argu-ment) Xk '̂(s+ k) = Xl e2�ils Z 10 e�2�il�Xk '̂(� + k) d�= Xl e2�ilsXk Z 10 e�2�il�'̂(� + k) d�= Xl e2�ils Z 1�1 e�2�il�'̂(�) d�= Xl e2�ils �'(l) = Xl e�2�ils'(l)The proof is omplete.The Sampling Theorem is next on our programme. The theorem shows thepossibility to reonstrut a funtion de�ned on the whole real axis in its entirety,15



under ertain onditions on its spetrum (Fourier transform), from knowledge ofits denumerable sample values only.We write sin�x=(�x) =: sin x and 1(�1=2;1=2) , where the latter denotes theut-o� funtion whih takes the value 1 on (�1=2; 1=2), and 0 elsewhere. Notethat F1(�1=2;1=2) = sin .Theorem 1.6 (The Sampling Theorem) Suppose that f is a smooth fun-tion with moderate growth at in�nity as in De�nition 1.2.2, and with f̂(s) =0; jsj � 1=2. 10 Then f = sin � 1Xk=�1 f(k)Æk= 1Xk=�1 f(k) sin (� � k)holds in the subspae Slp = f' 2 S; '̂(s) = 0 for jsj � 1=2g � S.Proof: The operations have been de�ned in Proposition 1.2.1 and 1.2.3, exeptfor the onvolution with sin. That this onvolution is legitimate will be veri�ablewhen it is done below. We haveXk f(k)Æk = fXk Æk(verify!). A Fourier transformation gives, using Poisson's Summation Formula,F(Xk f(k)Æk) = Ff � FXk Æk = Ff �Xk Æk =Xk Ff(� � k)where the last expression has period 1 and the sum redues to exatly one termon the interval (�1=2; 1=2), where it oinides with f̂(s). Multipliation by theut-o� funtion (verify legitimay!) and an inverse Fourier transformation yieldsthe formula.Remark 5 We have hosen the sampling interval 1. If instead the samplinginterval is T and f̂(s) = 0; jsj � 1=(2T ) thenf = 1Xk=�1 f(kT ) sin (�=T � k)whih is seen by putting g(x) = f(xT ) and using the Sampling Theorem on thefuntion g.10 f is then in�nitely di�erentiable aording to Paley & Wiener, Theorem 2.1 below.16



Remark 6 In tehnial appliations it is not possible to realize Æ or sin, andneither f̂(s) = 0; jsj � 1=2. However, approximations are possible, more or lesssuessful.You ould, for example, approximate Æ with a funtion d 2 S, whih is 0 out-side (�1=2; 1=2), non-negative, with integral 1, and with Fd 6= 0 on (�1=2; 1=2).Verify that there is a funtion d1 suh that (on Slp, see the Sampling Theorem)f = d1 �Xn f(n)d(� � n)Remark 7 Note the ompliation in Braewell's book (p. 223) with the symbolIII(x) = Pn Æ(x�n): III(x=�) is interpreted there (� > 0) as � Pn Æ(x�n�) whihthen should be the same as Pn Æ(x=� �n) (the origin of this lies in the followingformula in Braewell's book �Æ(x=�) = �Æ(x)� whih in turn derives from themisleading 'formula' �R Æ(x)f(x) dx = f(0)�).Verify as a ontrast the following saling of Poisson's Summation FormulaXn F'(n�) = j� j�1Xn '(n=�)and write it with Æ's.Generally, hanges of variable for distributions are somewhat intriate, whihmight be guessed from the fat that the distributions are not de�ned pointwiselike funtions. However, translations and salings present no speial problems, aswe have seen.Example 15 (Alias e�et) Assume that ' 2 S with'̂(s) = 0 (jsj � 1) & j'̂(s)j < � (1=2 < jsj < 1)This small sideband at 1=2 < jsj < 1 outside the main allowed passband reatesan error, the alias e�et, in the following approximations.'̂(s) � 1Xn=�1'(n)e�2�ins (jsj < 1=2)'(x) � Z 1=2�1=2 " 1Xn=�1'(n)e�2�ins# e2�isx dswhih may be estimated in terms of �. Estimate the maximal error as an exerise!Example 16 A diret example of the alias e�et is provided by the funtionf(x) = sin �x for whih the sample values at the integers f(n) = 0 for all n. (f hasits frequeny ontent exatly at the ritial limit 1/2: Ff = (Æ1=2 � Æ�1=2)=(2i).)The funtions fk(x) = sin k�x (k 6= 1 integer) all have the value 0 at the integerpoints. The funtion f = f1 has then in�nitely many aliases for when samplingat the integers: fk med k 6= 1 ett heltal.Di�erently put: given any funtion f(x) = sin a�x with a � 1=2, there is anumber b with jbj < 1=2 suh that the funtion g(x) = sin b�x oinides with fat all integer points. (Verify!) 17



2 Analyti ContinuationHere we will disuss things whih require some theory for funtions of a omplexvariable: the Paley-Wiener Theorem, the relation between the Laplae and theFourier transforms, and the problem of spetral fatorization.2.1 Paley & WienerThe feature of Paley-Wiener's Theorem is the absene of high frequenies in thespetrum, whih is haraterized by regularity and spei� onditions on thegrowth of the funtion.The theorem implies, among other things, that if a signal is ideally band-pass �ltered then it annot be entirely loalized to �nite time interval (and on-versely).11Theorem 2.1 (Paley & Wiener) Let f 2 S. Then (A > 0)f̂(s) = 0; jsj � A()( f(x+ iy) entirejf(x+ iy)j � CN(1 + x2 + y2)�Ne2�Ajyj for all N 2 NRemark 1 The theorem is valid also for f 2 S 0 and some integer N ; the proofthen beomes more tehnially involved.Proof: Suppose that f̂ = 0; jsj � A. We havef(x) = Z A�A e2�ixsf̂(s) ds= Z A�A Xn�0 (2�ixs)nn! f̂(s) ds= Xn�0 (2�ix)nn! Z A�A snf̂(s) ds(uniform onvergene). Sine j R A�A snf̂(s) dsj � CAn+1 the radius of onvergeneis in�nite, and f an be ontinued to an analyti funtion in the entire omplexplane (f is an entire funtion).Further we get ( (x + iy)2Nf(x+ iy) also entire)j(x+ iy)2Nf(x+ iy)j = (2�)�2N j Z A�A e2�i(x+iy)sD2N f̂(s) dsj� CNe2�Ajyj11 The theorem is further used (through the Support Theorem) in the theory of partialdi�erential equations. 18



whih implies the desired inequality (verify!).Conversely, assume that f(x+ iy) is entire withjf(x+ iy)j � C(1 + x2 + y2)�1e2�AjyjLet s > A and Cauhy's Integral Theorem gives for y < 0f̂(s) = Z 1�1 e�2�ixsf(x) dx= Z 1�1 e�2�i(x+iy)sf(x + iy) dx= Z 1�1 e�2�ixse2�ysf(x+ iy) dx(verify!). But (y < 0)e2�ysjf(x+ iy)j � Ce2�y(s�A)(1 + x2)�1whih implies f̂(s) = 0; s > A. (Verify the ase s < �A !) The proof is omplete.2.2 The Fourier-Laplae TransformNow to the relation between Laplae and Fourier transforms. Consider g 2 Swith gH = f (f ausal). ThenFf(s) = Z 10 e�2�isxf(x) dxan learly be ontinued to an analyti funtion of the omplex variable s in thelower half-plane =s < 0.Consider in partiular p = 2�is; <p > 0 :Ff( p2�i) = Z 10 e�pxf(x) dxObviously, the right hand side is the one-sided Laplae transform of f . It isnow lear that the Laplae and the Fourier transforms determine eah otherompletely through the hange of variable 2�is = p. Whih transform to useis thus in priniple an immaterial question. However, established pratie inengineering disiplines often makes a distint hoie depending on the appliation.In mathematial literature there is also a ommon name, the Fourier-LaplaeTransform.The one-sided Laplae transform of f 2 S may be written as the two-sidedLaplae transform of Hf :Z 1�1 e�pxH(x)f(x) dx = Z 10 e�pxf(x) dx = F(Hf)( p2�i)19



where we might have f 6= Hf . Results for the Fourier transform an now bediretly translated to results for the Laplae transform and vie versa. (Usually,the integral in the two-sided Laplae transform onverges in a vertial strip inthe omplex plane, a < <p < b .)Example 1 If we denote the two-sided Laplae transform of f 2 S, when thede�nition has meaning, by Lf (the one-sided will thus be L(Hf)) then we get(2�is = p)L(HDf) = F(HDf) = FfD(Hf)� f(0)Æg = 2�i(�)F(Hf)� f(0)= (�)L(Hf)� f(0)(reall that D(Hf) = fÆ +HDf ; fÆ = f(0)Æ).This is the one-sided Laplae transform of the derivative of a funtion fexpressed in the same transform of the funtion and its value at 0.We now show with the potential method how initial value problems may betreated with the Fourier-Laplae transform.Example 2 (Braewell, page 394) Consider the initial value problem( y00 + 3y0 + 2y = 2y(0) = 1; y0(0) = 0First, we onsider a general right hand side S 2 S 0, whih is a funtion withpossibly a term PNk=0 akÆ(k) added. A fundamental solution (Green's funtion,potential funtion, impulse response)12 may be onstruted, whih yields thesolution for a general right-hand side S.Consider, with suh a right-hand side S, the initial value problem( y00 + 3y0 + 2y = Sy(0+) = 1; y0(0+) = 0The solution will be a tempered distribution whih, apart from possibly a sumof Æ and its derivatives, is a funtion (verify!).13The fundamental solution G is de�ned as the solution to the equationG00 + 3G0 + 2G = Æ with G(x) = 0; x < 0G may be obtained by a Fourier transform, a partial fration deomposition, andan inverse Fourier transformation (verify!). this gives G(x) = (e�x � e�2x)H(x)here � draw the graph and realize why!12 These are treated in ourses on di�erential equations.13 y(0+) et. denote limits of the funtion part. (Verify that these exist!)20



With z = G � S we get14z00 + 3z0 + 2z = S and z(0+) = a; z0(0+) = bwhere a; b depend on S. (Apart from possibly Æ and its derivatives, z beomes afuntion.) When S = 2, we have z = 1.Adding z and a suitable solution to the homogeneous equation, the desiredsolution is obtained y = z + 1e�(�) + 2e�2(�)The onstants 1; 2 are hosen suh that y(0+) = 1; y0(0+) = 0, whih is possible(verify) sine the solutions e�(�); e�2(�); to the homogeneous equation are linearlyindependent. When S = 2, we get 1 = 2 = 0.In the ase S = 2, we may alternatively put T = Hy; y is ontinuouslydi�erentiable here. The equation beomes (ompare Example 1)T 00 + 3T 0 + 2T = 2H + 3Æ + Æ0where the initial onditions now are inorporated into the right-hand side. Thesolution is obtained by a Fourier transformation, simpli�ation, and an inverseFourier transformation. It is T = H, whih gives y = 1.2.3 Spetral FatorizationWe onlude with the problem of spetral fatorization: assume that we haveobserved the energy spetrum, jFf j2, of, say, an eletrial signal f 2 S . Youmight think that f has the dimension Volt and the variable the dimension seond.Parseval's Formula Z jf(x)j2 dx = Z jFf(s)j2 dsexpresses then the total energy of the signal in two ways: jf(x)j2 is the energydensity in time, while jFf(s)j2 is the energy density in frequeny, energy spe-trum.15The problem of spetral fatorization is, given the energy spetrumjFf j2, to�nd the funtion f . Consequently, all information about the phase of Ff ismissing.The problem is, of ourse, not uniquely solvable. Clearly,jFf(s)j2 = jei�(s)Ff(s)j2that is, multipliating the Fourier transform with a phase fator ei�(s) does nothange the energy spetrum.14 Note that z = G � S is a partiular solution as de�ned in elementary analysis ourses.15 The term power spetrum is used somewhat di�erently in onnetion with stationarystohasti proesses. 21



In appliations, it is not unusual that the funtion sought is ausal. If weknow that f is ausal (f = Hf) then the solution to the spetral fatorizationproblem is unique up to a onstant fator of modulus 1.16 This is a onsequeneof the representation for ausal fFf(s) = Z 10 e�2�isxf(x) dxwhih an be ontinued to an analyti funtion in the lower half-plane =s < 0.Two analyti funtions with the same modulus di�er with at most a onstantfator of modulus 1.

16 If f is real-valued the solution is unique up to a hange of sign.22



3 Two Probability TheoremsWe will give a simple proof of the Central Limit Theorem, and then desribe theonnetion between autoorrelation funtions and probability measures.3.1 The Central Limit TheoremThe probability measure orresponding to the sum of n independent stohastivariables with two equally likely outomes may, normalized to mean value 0 andvariane 1, be represented by the onvolution (the number of fators is n)Tn = (12 Æ�1=pn + 12 Æ1=pn) � � � � � (12 Æ�1=pn + 12 Æ1=pn)Theorem 3.1 (The Central Limit Theorem) With Tn as above, we have (inS 0) limn!1Tn = 1p2�e�(�)2=2Proof: We have (in S 0)limn!1FTn = limn!1(os 2�(�)pn )n = e�2�2(�)2(verify the last elementary limit!) An inverse Fourier transformation gives theresult.Remark 1 The same proof may be used for the ase with an arbitrary prob-ability measure with �nite variane (one suh is the above 12 Æ�1 + 12 Æ1).3.2 Autoorrelation FuntionsDe�nition 3.2.1 The autoorrelation funtion of a funtion ' 2 S is written' ? ' and is de�ned by ' ? '(x) := Z '(x+ u)'�(u) duNote that ' ? ' = ' � ('�)�( �'(x) := '(�x)). Furthermore, we have (' 2 S)Ff' ? 'g = jF'j223



(verify!) Every suh autoorrelation funtion has thus a non-negative Fouriertransform.17We will now (Theorem 3.2 and Remark 3) give an answer to the question:Whih objets have (like the autoorrelation funtion ' ? ') Fourier transformsthat are bounded positive measures? It is preisely these measures whih anbe normalized to probability measures, if divided by the total mass: the leastonstant C in the following de�nition.De�nition 3.2.2 Let T 2 S 0 and ' 2 S.T is alled a tempered measure if, for all ' 2 S with ' = 0 outside a �xedbounded interval, jT (')j � C supx j'(x)jholds. If C is independent of the interval, the measure is alled bounded.T is alled positive if T (') � 0 for all ' � 0, and we write T � 0.T is alled positive de�nite if T (' ? ') � 0 for all '.A motivation for the term 'positive de�nite' appears in Example 2 below.Proposition 3.2.1 Let T 2 S 0 . Then FT is positive if, and only if, T is positivede�nite.In addition, if T is positive then T is a (positive tempered) measure.Proof: The following hold for all ' 2 SFT (') � 0; ' � 0, FT (j'j2) � 0, T (' ? ') � 0(verify the last step!) The �rst step (in the non-trivial diretion) is veri�ed byputting, for 0 �  2 S with the value 0 outside a bounded interval, n(x) = ( (x) + e�x2=n)1=2and noting that  2n tends to  in S (verify!).To prove the seond statement, take real-valued (si!) 'n 2 S whih are 0outside a �xed bounded interval and with supx j'n(x)j ! 0. Let 0 � ' 2 S be1 on the interval, and take " > 0 arbitrarily. For n large enough, "' � 'n � 0holds, whih yields "T (')� T ('n) � 0, or jT ('n)j � "T ('). We get T ('n)! 0,whih implies the desired inequality (verify!). The proof is omplete.17 ' ?' is sometimes normalized through a division by the saling fator R j'(u)j2 du, and isthen written . Then R ̂(s) ds = 1 and � � 0; whene probability measure.24



Example 1 If ' 2 S then ' ? ' is positive de�nite (verify!).Example 2 Suppose f is a ontinuous funtion, and also a positive de�nitetempered distribution. Then we havejf(x)j � f(0) and �f = f �We verify this by writing0 � Z f(x)' ? '(x) dx = Z Z f(x+ y)'(x)'(�y)� dxdyand hoosing ' there whih approximate Pnj=1 zjÆxj . This gives the onditionXj;k f(xj � xk)zjz�k � 0whih is satis�ed for all hoies of xj; zj .In the ase x1 = 0; x2 = x, the ondition implies that the matrix" f(0) f(x)f(�x) f(0) #is Hermitian and positive (verify!). In partiular, we get �f = f � and jf(x)j � f(0),whih we wanted to prove.Now the the matrix [f(xj � xk)℄ is learly Hermitian and positive. That thismatrix is positive de�nite means by de�nition (of positive de�nite matries) thatequality in the ondition is attained only when all zj = 0.18Example 3 Let T 2 S 0 be positive de�nite. Then �T = T � holds, whereT �(') := T ('�)�. Verify this!Verify also that Æ is a positive bounded measure with total mass 1 (as well asany non-negative integrable funtion with integral 1). Moreover, verify that thefuntion f(x) = x2 is a positive unbounded measure.Chek �nally that, e.g., the funtion f(x) = ex2 , whih does not belong to S 0,still enjoys the �rst property in De�nition 2. The funtion f is a positive measurewhih is not tempered. We will not go into further details here.Theorem 3.2 (Bohner) Suppose f 2 S 0 is positive de�nite and a ontinuousfuntion. Then Ff is a bounded positive measure.18 It an be shown that (verify!), for a positive de�nite ontinuous funtion f 2 S 0, if jf(x0)j =f(0) and jf(x)j < f(0); 0 < x < x0, then Ff =Pk akÆ(k+�)=x0 where Pk ak = f(0); ak � 0,and f(x0) = e2�i�f(0). In this ase the matrix need not be positive de�nite (verify!).25



Proof: Aording to Proposition 3.2.1, Ff � 0 and is a positive measure. Theontinuity of f will now yield �nite total mass of Ff . Choose 0 � ' 2 S suhthat '(0) = 1 and F'(s) = 0; jsj � 1 (verify that this is possible!). Put'n(x) = '(x=n); n = 1; 2; : : : .We get (Ff � 0, f ontinuous)0 � Ff('n) = f(F'n) = Zjxj�1=n f(x)F'n(x) dx �! f(0)Consider now an arbitrary bounded interval (a; b), and observe that 'n(x) �1� " holds in the interval if n is su�iently large. Take  2 S that is 0 outsidethe interval (a; b). Then (" > 0 arbitrary)'n(x)� (1� ") (x)= supx j (x)j � 0follows, and thus19(1� ")jFf( )j= supx j (x)j � Ff('n) � f(0) + "if n is large enough. Thus we havejFf( )j � f(0) supx j (x)jThe proof is omplete.Remark 2 Using the more general onept of distribution (not only temperedones) and the orresponding de�nition of positive de�nite distribution, Shwartz'Theorem holds: T is positive de�nite preisely when FT is a positive measure.An idea for a proof is to regularize T by onvolving it with approximate Æ to aontinuous funtion, then use Bohner's Theorem 3.2, and take limits.In the tempered ase, this is Proposition 3.2.1. There the positive measure isa tempered distribution, whih narrows the possibilities (see Example 3).Remark 3 For a positive measure with �nite total mass, it an be shown thatits Fourier transform is a (positive de�nite) ontinuous funtion, the value ofwhih at 0 is the total mass of the measure.
19 Compare to the proof of Proposition 3.2.1.26



4 Seleted LandingsWe will land at seleted plaes in Braewell's book, in about the order thingsappear there. We start with the Unertainty Relation, treat then Gibb's Phe-nomenon, followed by the Radon Transform. Our next landing is in antennas andthin lenses. We onlude with a disussion of some issues onerning disretiza-tion and Fourier transform.4.1 The Unertainty RelationThe Unertainty Relation in quantum mehanis is mathematially the fat thatthe two integralsZ jDf(x)j2 dx (= 4�2 Z jsFf(s)j2 ds) and Z jxf(x)j2 dxannot both be small jointly. This is quantitatively expressed by the followingtheorem.Theorem 4.1 (The Unertainty Relation) Let f 2 S with R jf(x)j2 dx = 1.Then 12 � (Z jDf(x)j2 dx)1=2(Z jxf(x)j2 dx)1=2holds.Proof: The following identity is the foundation of the proof. (Verify the identity!)f = Df(�)fg � (�)DfWe now use the identity, a partial integration, and the Cauhy-Shwarz' inequal-ity. 1 = Z f(x)f(x)� dx = Z Dfxf(x)gf(x)� dx� Z xDf(x)f(x)� dx= � Z xf(x)Df(x)� dx� Z Df(x)xf(x)� dx� 2(Z jDf(x)j2 dx)1=2(Z jxf(x)j2 dx)1=2The proof is omplete.
27



4.2 Gibbs' PhenomenonThe partial sums of a Fourier series belonging to a funtion with a jump dis-ontinuity all display an overshoot lose to that point. This is alled Gibbs'Phenomenon.Let f and g have period 1, and let D2g be ontinuous. Then the Fourier seriesof g onverges uniformly to g at all points (Theorem 1.5). Assume thatg 1(�1=2;1=2) = (f � (H � 1=2)) 1(�1=2;1=2)This means that f has a unit jump at the integers and at the half-integers om-pared to g ; otherwise they have the same regularity. (Draw a piture!)We will now investigate f � g whih is a square wave � Gibb's Phenomenonfor f will be the same as for the square wave f � g (verify!). In the interval(0; 1=2) we onsider the di�erene (whih produes the overshoot)NXn=�N ne2�inx � (H(x)� 1=2) = � Xjnj>N ne2�inx(this may be shown to onverge pointwise in 0 < jxj < 1=2).Calulating the oe�ients n, we have (with N = 2M + 1)NXn=�N ne2�inx = MXk=0 2�(2k + 1) sin 2�(2k + 1)xThe smallest positive extremum point (put the derivative equal to 0) is herex = 1=(4M + 4) = 1=(2N + 2), whih gives� Xjnj>N ne�in=(N+1) = � 1Xk=M+1 2�(2k + 1) sin(�(2k + 1)=(2M + 2))When N ! 1, it follows that M ! 1 and the right-hand side (whih is aRiemann sum) onverges to� Z 11 sin�x�x dx � 0; 0894899(where the value has been omputed by Mathematia).The overshoot is thus about 9% of the jump as N !1.4.3 The Radon TransformIn dimension 2, the Radon transform of a funtion is its integral over all lines.This transform is used, for example, in Computer Tomography (CT), in Mag-neti Resonane Imaging (MRI), in Positron Emission Sanning (PET), and inSyntheti Aperture Radar (SAR).2020 In SAR, the lines are replaed by irles.28



In Computer Tomography, the funtion f(x) represents the absorption oe�-ient in the material (tissue) per unit length, and the absorption is observed forX-rays traversing a ross-setion of the objet (body) along lines LZL f(x(l)) dlThis is now in theory reorded for all lines L, and the task is to reprodue thefuntion values f(x) from the values of all the line integrals.21De�nition 4.3.1 The Radon Transform of a funtion f 2 S is de�ned byR�f(s) := Zx��=s f(x) dxwhere j�j = 1.22Note that R�f(s) = R��f(�s), and that the requirement j�j = 1 is made tohave the line orrespond bijetively, apart from a sign, to (�; s).Remark 1 The Abel Transform of the radial funtion f in dimension 2 isde�ned by ((x > 0)) Af(x) := 2 Zr>x f(r) r drpr2 � x2and Af(�x) := Af(x).23Verify that the Radon transform of a radial funtion oinides with its Abeltransform. This means that, for radial funtions in dimension 2, omposing anAbel transform with a Hankel transform24 is the same as omposing the Radontransform and the Fourier transform.Remark 2 In dimension n � 3, the integration may be done in more than oneway. One is to integrate over the (n � 1)-dimensional (hyper-)plane x � � = s ;another is to integrate over the lines x = t + l�, where j�j = 1 and t � � = 0. Inappliations, integration over lines is ommonly used � images in dimension 3 areoften built from plane slies, the latter being reonstruted from line integrals.A natural question might now be: Whih families of 'surfaes' or 'lines' areadmissible for a reonstrution of a funtion from values of its integrals over theseto be possible?2521 The viability of this task was shown by Radon about a entury ago.22 The variable s has a di�erent role in this setion, and � denotes a point on the unit irle(sphere)!23 The last statement is used, but not expliitly made in Braewell's book.24 The Fourier transform of a radial funtion is the Hankel Transform.25 We refer to the book Helgason S., The Radon Transform, Birkhäuser, 1980, where aomprehensive treatment of the entral issues may be found.29



Remark 3 In implementations, problems arising from disretization, samp-ling, and reonstrution, will arise.26 One suh is that the Radon transform isexpressed in polar oordinates, while the reonstrution is done with the FastFourier Transform in retangular oordinates ...We now show the theoretial result on whih all of the tehniques CT, PET,MRI, and SAR are based.Theorem 4.2 (Radon) Let f 2 S. ThenFR�f(�) = Ff(��)holds.Proof: It su�es to onsider the ase � = (1; 0), sine a rotation of the oordi-nate system in the (x1; x2)-plane orresponds to the same rotation in the Fourierdomain. (Verify!)We get, with � = (1; 0), that x � � = x1, and thusFR�f(�) = Z 1�1 e�2�i�s Zx1=s f(x1; x2) dx2ds= Z Z e�2�i�(1;0)�(x1;x2)f(x1; x2) dx1dx2= Ff(��)We end with a starting point for reonstrution of a funtion from its Radontransform. Reall that the Hilbert transform orresponds to multipliation byi sign (�) in the Fourier domain, and that di�erentiation orresponds to multipli-ation by 2�i(�).Example 1 Let f 2 S. Then, in dimension 2 after a hange to polar oordi-nates, (R�f(s) = R��f(�s))f(x) = Z e2�ix��Ff(�) d�= Z e2�i���xFf(��)� d�d�= 1=2 Z e2�i���xFR�f(�)� sign� d�d�= �1=(4�) Z e2�i�(��x�s)i sign� 2�i�R�f(s) dsd�d�where the integration, from the third equality sign on, is made over all real �,i.e., also over negative values.26 Further information on these matters is available in the book Natterer F., The Mathe-matis of Computerized Tomography , Wiley, 1986.30



4.4 Antennas and Thin LensesIn this setion, we disuss oherent eletromagneti radiation: the wavelength(and the frequeny) is thus �xed throughout.First, we onsider the relation between the aperture �eld and the diretionharateristis of an antenna, whih is approximately given by the Fourier trans-form.Seond, we will argue that a �eld in one foal plane of a thin onvex lensreates approximately its Fourier transform in the opposite foal plane.AntennasHere we just brie�y reiterate the argument in Braewell's book, and use the samenotation.Consider the ase when the �eld in the aperture of the antenna may be de-sribed by one position variable only: E(x)ei!t, where ! is the irular frequeny.At the point P at the distane r from the point x, the ontribution to the far�eld will be E(x)ei!te�2�ir=� from the aperture �eld by Huyghens' Priniple, where�!=(2�) is the �eld propagation veloity. Let now R denote the distane betweenthe point x = 0 and the point P , and � the angle between the horizontal axisand the line through x = 0 and P .The Cosine Theorem givesr2 = R2 + x2 � 2xR os(� + �=2)or r = R �1 + 2(x=R) sin � + (x=R)2�1=2For x � R (far away ompared to the antenna dimensions), we approximatelyhave r = R + x sin �whih gives, after integration over x and with s = (sin �)=�, the �eld at Pe�2�iR=�+i!t Z 1�1E(x)e�2�ixs dx = e�2�iR=�+i!tÊ(s)Sine s = (sin �)=�, this is essentially the diretion harateristis as j�j � 1.Example 2 For E = 1(�1=2;1=2), Æ, Æ�1=2 + Æ1=2 The harateristis will be ap-proximatively respetively sin, 1, os(�(�)=�).A Thin Convex LensWe will onsider a thin onvex lens with foal distane f and, in one foal plane,the �eld E(x)ei!t. We will restrit our disussion to the geometrial optis ap-proximation and 'entral rays'. Notation will found in the �gure below.31



Suppose thus that the �eld in one foal plane is given by E(x)ei!t, where !is the irular frequeny, and �!=(2�) is the �eld propagation veloity.
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In the geometrial optis approximation, rays from a point x in one foalplane is refrated to parallel rays by the lens, and the ray through the enter isnot refrated. This implies that a ray from the point x to the point s has travellength �f 2 + jsj2�1=2 + �f 2 + jxj2�1=2whih is, when jxj � f; jsj � f , approximatively 2f + (jxj2 + jsj2)=(2f). Theassumption about entral rays implies jxj � jsj, and so the approximate travellength amounts to 2f + jxjjsj=fBy Huyghens' Priniple, the ontribution from the point x to the �eld at thepoint s is thus, sine xs = �jxjjsj from the geometrial optis approximation,E(x)ei!te�2�i(2f�xs=f)=�. This yields, after an integration over x, the whole �eldat the point se�4�if=�+i!t Z E(x)e2�ixs=(f�) dx = e�4�if=�+i!tÊ(�s=(f�))This may be expressed as the �eld in one foal plane generates its Fourier trans-form in the other foal plane. 32



Example 3 Let the funtionf = "�1(�1=2;1=2)((�)1)=�)=� 1(�1=2;1=2)((�)2=�)=�� �Xn Æn# 1(0;1)(j � j=R)=R2represent an in�nite square lattie. The squares have edge-length � and areentered at the integer points n = (n1; n2). The lattie is irularly ut o� withan iris diaphragm of radius R.A Fourier transform givesf̂ = "sin(�(�)1)sin(�(�)2)Xn Æn# � J1(2�Rj � j)=(Rj � j)= Xn sin(�n1)sin(�n2)J1(2�Rj(�)� nj)=j(�)� njThe graph of jf̂ j2 below has been reated byMatLab. The omputation requiredabout 40 M�op to produe the graph from the 289 funtion values used. Theparameters were � = 2=3; 2�R = 20; �4 < s1 < 4; �4 < s2 < 4. (The intervalswere inreased 0.001 at the boundary points.)
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4.5 Some Issues of DisretizationSampling and Fourier TransformationA numerial treatment of funtions and Fourier transforms is ommonly preededby an approximation. For example, a funtion f 2 S may be approximatedby a �nite number of values, eah value being represented by a �nite deimalexpansion.27We will assume that a low-pass �ltering has been performed, so that Ff(s) =0; jsj � 1=2. The Sampling Theorem then tells that the sample values f(n); n 2Z, ontain the information about all other funtion values, and (jsj < 1=2)Ff(s) =Xn f(n)e�2�ins =Xn f(n)z�n = F (z) 28In the example hosen here, f 2 S, in general there are in�nitely many non-zerosample values. Then all but a �nite number, N say, have to be disarded. Welet, with A as in Approximation,FfA(s) := N�1Xn=0 f(n)e�2�insPut F� := N�1FfA(�=N); fn := f(n), and we get the Disrete Fourier Transform,DFT. Compare Proposition 1.3.2 above!NF� = N�1Xn=0 fne�2�in�=N (0 � � � N � 1)fn = N�1X�=0 F�e2�in�=N (0 � n � N � 1)What is the error in the transform due to the approximations? A rough �rstestimate shows (jsj < 1=2)jFf(s)� FfA(s)j � Xn6=0;:::;N�1 jf(n)jwhere the error is expressed in the disarded values. The subsequent restritionto F� entails no additional loss of information (verify!).27 Round-o� errors appearing when taking �nite deimal expansions, quantization errors, areusually supposed to be independent and normally distributed. We will subsequently assumethat the sample values are exat, and thus disregard quantization errors.28 The z-transform of the sample sequene is the Fourier transform of the ontinuous timesignal with z = e2�is; jsj < 1=2. 34



Diverse ConvolutionsThe onvolution of two tempered distributions whih are ontinuous periodifuntions (with the same period) annot be given meaning within our framework.Verify this by onsidering the Fourier transform of a proposed onvolution.However, a periodi onvolution of two periodi funtions f oh g, both withperiod 1, may be de�ned byf h* g(x) := Z 10 f(x� y)g(y) dywhere f h* g gets period 1. The periodi onvolution orresponds to multipliationof the Fourier oe�ients (verify!).Note that a funtion whih is 0 outside a bounded interval an be treated asperiodi without loss of information (keeping in mind that it is not periodi but0 outside the original interval!).For sequenes, ffng ; fgng, the standard de�nition of onvolution(f � g)n = 1Xk=�1 fn�kgkorresponds to a multipliation of their z-transforms. If the sequenes have �nitelength M (i.e. the value is 0 exept for M onseutive ones) and N respetively,then the onvolution will, in general, have length M +N � 1. (Verify!)Two sequenes of length N , ffng and fgng, may be ontinued periodiallyand then a periodi onvolution may be de�ned:(f h* g)n := N�1Xk=0 fn�kgkwhih has the same period N . For the Fourier transforms above, F� and G�,(whih also may be ontinued with period N) this onvolution again orrespondsto multipliation (verify!).The periodi onvolution and the usual one oinide if the sequenes are ex-tended by zeroes so as to double their length. Let ffngN�1n=0 ; fgngN�1n=0 both havelength N , and let ff 0ng ; fg0ng be the same with N � 1 zeroes appended at oneend, say. Then (f 0 h* g0)n = (f � g)n (0 � n � 2N � 2)holds. Verify this!Fast Fourier Transform: FFTWe desribe the key idea behind a fast algorithm, FFT, to ompute the Fouriertransform of sequenes of ertain lengths N . We take N = 2n, but the same35



idea applies in the ase N = p1p2 � � � pn with pi prime numbers. The number ofoperations multiply-add beomes N 2logN , when N = 2n.29Let �rst N = 2. We have X0 = x0 + x1X1 = x0 � x1Clearly, 2 operations were needed.Let next N = 4. We haveX0 = x0 + x1 + x2 + x3X1 = x0 + ix1 � x2 � ix3X2 = x0 � x1 + x2 � x3X3 = x0 � ix1 � x2 + ix3Here, the ase N = 2 may be used on the 2 ouples (x0; x2) and (x1; x3), andthen 4 operations performed; thus a total of 8 operations.Let �nally N = 8. Partition the sequene into 2 groups:(x0; x2; x4; x6) and (x1; x3; x5; x7)Use the ase N = 4 on eah group. Verify that an additional 8 operationsonlude the alulation! (1 per oe�ient.)Hopefully, the key idea behind the FFT is now disernible. This onstitutesthe main loop in the design of omputer implementations for general N = 2n.30How many operations are needed in the general ase N = p1p2 � � � pn ?Example 4 Multipliation of two numbers orresponds to a onvolution oftheir digit sequenes in any base. (Compare the z-transform.)If both numbers have N = 2n digits, a straight-forward alulation of theonvolution would need N2 multiply-add operations � this is a quadrati de-pendene on the number of digits. If, instead, both sequenes are �rst treatedwith FFT, then pointwise multiplied, and �nally given an inverse FFT, then thenumber of operations will be N +3N 2logN � whih grows onsiderably slowerthan quadrati in the number of digits.A pratial problem in the usage of FFT is that not all sequenes have lengthN = 2n. This problem, and the problem of disarding sample values, will betopis in omputer exerises.29 A straight-forward alulation of the transform requires in this aseN(N�1)multiply-adds(verify!)30 A disussion of the mathematial rami�ations of the main idea, and some historialmaterial, may be found in Auslander L. & Tolimieri R., Is omputing with the �niteFourier transform pure or applied mathematis? Bull. Amer. Math. So. 1:6 (1979), 847�897.(The department library has the journal.) 36



5 Wavelet Analysis � a SkethA drawbak with the Fourier transform is that a loal hange at one frequenyin�uenes the orresponding funtion globally: a hange in one term of the Fourierseries alters the funtion everywhere.One way to irumvent this drawbak is to perform a wavelet transform.31A given funtion f 2 L2 (jf j2 integrable) is deomposed into a sumf(x) = 1Xk;l=�1ak;l2�k=2 (2�kx� l)where ak;l = Z f(x)2�k=2 (2�kx� l)� dxIn more ondensed notation, this beomesf = 1Xk;l=�1ak;l k;l where ak;l = (f;  k;l)Eah term is, apart from a sale fator, a dilated and translated version ofa single funtion, the wavelet  2 L2, whih will be mainly loalized in a timeinterval. If a narrow frequeny band is desired, the prie is worsened loalizatonin time, and onversely, due to the Unertainty Relation.32Note that the sale doubles when k is inreased to k + 1 � this is the reasonfor the minus sign in 2�k.33The wavelet system may be hosen orthogonal or not, depending on the spe-i� appliation.The wavelet transform has, as the Fourier transform, both a ontinuous, adisrete, and a �nite version. We only disuss the disrete and �nite versionhere.34Computationally, the wavelet algorithm is better than the FFT: the numberof operations multiply-add is at most (n + 1) 2K+1 when the sequene length is2K, where n is a onstant depending on the wavelet used. For the Haar system,n = 1.31 Another way would be to perform a 'windowed Fourier transform', whih means �rstlooking through a 'window' ut out of the funtion and then Fourier transform that part. Thislatter proedure turns out to be onsiderably more ostly in terms of omputational operations.32 The sum will onverge in L2, and equality will hold almost everywhere, in most ases.33 Some authors use the reversed onvention with the sale of the variable inreasing as theindex dereases. With this other onvention, the sale of subspaes below will then be inreasinginstead of dereasing with the index.34 A good referene for wavelet theory is the book Ingrid Daubehies, Ten Letures onWavelets, SIAM, Philadephia, 1992. Daubehies has personally ontributed to the developmentof the theory. See also the introdutory book J Bergh, F Ekstedt, M Lindberg, Wavelets,Studentlitteratur, Lund, 1999. 37



In what follows, we desribe the arguments for a general orthogonal systemof wavelets, whih are real-valued and orrespond to a �nite transform in eahstep. Then we disuss the algorithms, and we exemplify with the Haar system.Finally, we interprete the analysis in terms of a sale of subspaes of L2, withpertinent projetions and orthogonal omplements.5.1 WaveletsWe start from the funtion � 2 L1 TL2 with R � 6= 0, the saling funtion,whih satis�es a reurrene equation�(x) = nXk=0 k21=2�(2x� k)together with the orthogonality onditionsZ �(x�m)�(x) dx = Æm0The funtion is thus normalized by (R �2)1=2 = (Pnk=0 2k)1=2 = 1 (The terms inthe right-hand side are orthogonal).For the Haar system, � = 1(0;1), n = 1, and 0 = 1 = 2�1=2.Note that 0 � x � n=2 implies �k � 2x � k � n � k. Thus, if �(x) = 0outside the interval (0; n) (see the next exerise), then its values in (0; n=2) aredetermined by its values at the integers in (0; n). In the Haar system, (� has ajump disontinuity at 0 and at 1), we will put �(0) = 1 and �(1) = 0.A Fourier transformation of the reurrene equation givesF�(s) = F�(s=2) 2�1=2 nXk=0 ke��iks := F�(s=2)p(s=2)Note that p(0) = 1 follows here. A reiteration givesF�(s) = F�(s=2N) �Nk=1p(s=2k)and, when N !1, F�(s) = F�(0)�1k=1p(s=2k)In the Haar system, the left-hand side is the funtion e��is sin s, whih thus isexpressed as an in�nite produt.Exerise 5.1.1 Show that the last equation implies that �(x) = 0 outside (0; n).Apparently, the polynomial p or its oe�ients k ontain all informationabout the funtion �. In the algorithms, nothing but these oe�ients appear.38



The ortonormality for the integer translates of � above beomes by Parseval'sFormula Æm0 = Z F�(s) �e�2�imsF�(s)�� ds= Z 10 e2�ims 1Xl=�1 jF�(s+ l)j2 dswhih implies1 � 1Xl=�1 jF�(s+ l)j2 = 1Xl=�1 jF�((s+ l)=2)j2jp((s+ l)=2)j2This yields (onsider l even and odd respetively in the sum; p has period 1)jp(s)j2 + jp(s+ 1=2)j2 � 1or nXk=0 k+2mk = 0 (1)From �, we de�ne the funtion  , the wavelet, whih will satisfy the twoentral requirements Z  (x)�(x�m) dx = 0for all integers m, and  (x) =Xk dk 21=2�(2x� k)These mean that linear ombinations of integer translates of  are orthogonal tosuh of �, and that  is a linear ombination of half-integer translates av � in thehalved sale. A normalization is also done here by (R  2)1=2 = (Pk d2k)1=2 = 1.We will now argue that the oe�ients dk are pratially determined by theoe�ients k. Parseval and reurrene give, with q(s) := 2�1=2Pk dke�2�iks andusing the same alulations as before (verify!), the onditionp(s)�q(s) + p(s+ 1=2)�q(s+ 1=2) = 0This is ful�lled (essentially only) byq(s) = e�2�i(s+1=2)p(s+ 1=2)�whih implies q(0) = 0 by the identity for the polynomial p above and p(0) = 1.The ondition beomesXk dkk+2m = 1Xk=�n+1(�1)k1�kk+2m = 0 (2)39



(verify!) Consequently, we have (x) = 1Xk=�n+1(�1)k1�k21=2�(2x� k)and (q(0) = 0) Z  (x) dx = F (0) = F�(0)q(0) = 0When � = 1(0;1),  = 1(0;1=2) � 1(1=2;1) and is alled the Haar funtion.The orthogonality ondition (jkj+ jlj 6= 0)Z  (2�kx� l) (x) dx = 0is thus ful�lled for k = 0.Orthogonality for k = �1 follows fromZ  (2x� l) (x) dx = 1Xm=�n+1(�1)m1�m Z  (2x� l)�(2x�m) dx = 0In the same way, we get the orthogonality for all k 6= 0.5.2 Fast Wavelet Transform: FWTThe algorithms are founded on the following observation. The equations (1)and (2) may be interpreted as that the matries L�L and H�H below representprojetions with orthogonal values (more about this presently). The matries Land H ontain only the oe�ients in the polynomial p. 35[L℄ij = j�2i [H℄ij = (�1)j1+2i�jIf the signal to be transformed has length N = 2K, we hoose 0 � i � 2K�1�1and 0 � j � 2K � 1 in the �rst step. For the Haar system, if N = 22 and thesignal is the olumn vetor x = [x0 x1 x2 x3℄� we haveLx = 2�1=2[x0 + x1 x2 + x3℄�L�Lx = 1=2[x0 + x1 x0 + x1 x2 + x3 x2 + x3℄�Hx = 2�1=2[x0 � x1 x2 � x3℄�H�Hx = 1=2[x0 � x1 � x0 + x1 x2 � x3 � x2 + x3℄�35 In the review artile by G Strang, Wavelets and dilation equations: a brief introdution,SIAM Review 31 (4), 1989, 614-627, the oe�ient index in the de�nition of the matrix L haserroneously been given the wrong sign. The matrix H is similarly wrong. This means that,given the reurrene equation, the matries in the artile belong to the funtions �(n� x) and (n� x). 40



The notation L and H are hosen to indiate low-pass and high-pass �lter re-spetively; the reason is explained below.The following matrix onditions are equivalent to the polynomial ones for pand q (whih in turn are equivalent to (1) and (2)).HL� = 0 (& LH� = 0) (3)LL� = E & HH� = E (4)L�L+H�H = E (5)The wavelet anaysis of the signal x means, in step 1, to alulate Lx and Hx,whih both will be half as long as x. The last step of the reonstrution will be toalulate L�Lx and H�Hx from Lx and Hx, and sum them: L�Lx+H�Hx = x.If the signal length is N = 2K, the analysis will be a reiteration (at most) Ktimes of step 1 on the result of operating with L in the previous step; for thereonstrution the orresponding proedure is applied.Exerise 5.2.1 Do the entire analysis above for N = 22 and ompare step bystep to the FFT.The vetor x � L�Lx = H�Hx is the projetion on a 'high-frequeny' om-ponent of x, while x � H�Hx = L�Lx is the projetion on a 'low-frequeny'omponent. The omponents are orthogonal by (3):H�Hx(L�Lx)� = H�Hxx�L�L = H�HL�Lxx� = 0In addition, we have from (4)(H�H)2 = H�HH�H = H�H & (L�L)2 = L�LL�L = L�Lthat is, H�H and L�L are projetions.The ondition (5) therefore means that we an divide any vetor into orthog-onal omponents: one with the high frequenies and one with the low.A natural question, whih we now turn to, is:What is the onnetion between the results of the steps in thealgorithm and the sample values and the wavelet oe�ientsof the ontinuous-time signal?Write the low-pass �ltered ontinuous-time signal x(t), with Fx(s) = 0 forjsj � 1=2, and where the sample values x(l) are approximated to 0 outside theintegers 0; 1; 2; ::: ; 2K � 1, as (the index a as in approximation)xa = sin � 2K�1Xl=0 x(l)Æl = 2K�1Xl=0 x(l)sin( � � l)41



The starting point of the analysis is (the index w as in wavelet)xw = � � 2K�1Xl=0 x(l)Æl = 2K�1Xl=0 x(l)�( � � l))After a Fourier transformation, we haveFxa(s) = 1(�1=2;1=2)(s) 2K�1Xl=0 x(l)e�2�islFxw(s) = F�(s) 2K�1Xl=0 x(l)e�2�islThe funtion xw will apparently ontain the same information as the funtion xapreisely when the ondition F�(s) 6= 0 , 1(�1=2;1=2)(s) 6= 0 is ful�lled.Remark 1 The wavelet analysis is thus not performed diretly on the low-pass�ltered signal, but after a �ltering whih adds alias e�ets if F�(s) 6= 0 outside(�1=2; 1=2), most prominently in the smallest sales. High (low) frequenies willthen seem to ontain more (less) energy than their part of the energy spetrum ofthe signal. If F�(s) deays slowly to 0 outside (�1=2; 1=2), this in�uene will belear. To avoid suh e�ets in the analysis result, a pre-�ltering an be performed,or perhaps hoose another � to start with.Exerise 5.2.2 Show that, in S 0,2K�1Xl=0 xl n�(n( � � l))! F�(0) 2K�1Xl=0 xlÆlHow does a hange of �(x) to n1=2�(nx) a�et the reurrene equation?Consequently, we now assume that (xl := x(l))xw = 2K�1Xl=0 xl�( � � l))represents (after �ltering) the usual approximation to �nitely many sample valuesof the given low-pass �ltered ontinuous-time signal x.To simplify the notation, we will in the sequel use the salar produt in L2(f; g) := Z f(x)g(x)� dxand, e.g., �k;l(x) := 2�k=2�(2�kx� l)42



Given the oe�ients xj, j = 0; 1; 2; :::; 2K � 1, the relation of whih to thesignal x was just disussed, we have xw as the input for the analysisxw = 2K�1Xj=0 xj�0;jThe wavelet oe�ients a1;i are then, using de�nitions and orthogonality, givenby a1;i = (xw;  1;i) = 2K�1Xj=0 xj(�0;j;  1;i)= 2K�1Xj=0 xj 1Xk=�n+1(�1)k1�k(�0;j; �0;2i+k)= 2K�1Xj=0 xj(�1)j1+2i�jHere we have now seen the matrix H in ation. The matrix L ats in a orre-sponding way: b1;i = (xw; �1;i) = 2K�1Xj=0 xj(�0;j; �1;i)= 2K�1Xj=0 xj nXk=0 k(�0;j; �0;2i+k)= 2K�1Xj=0 xjj�2iThe terms high-pass and low-pass �lter is motivated by F (0) = 0 and F�(0) 6=0, respetively (both are more or less loalized around 0) in the equalityFxw = 2K�1�1Xl=0 a1;lF 1;l + 2K�1�1Xl=0 b1;lF�1;l= 2F (2s) 2K�1�1Xl=0 a1;le�4�ils + 2F�(2s) 2K�1�1Xl=0 b1;le�4�ilsIn the Haar system, F�(s) = e��is sin s.Exerise 5.2.3 Show that, in the Haar system,F (s) = i e��is sin(�s=2) sin(s=2)43



5.3 A Sale of SubspaesLet � and  be as before, and put V0 as the set of all �nite linear ombinationsof integer translates of �, �(x� k), together with their limits in L2.Let V1 be the orresponding with 2�1=2�(2�1x� k): doubled sale � thus theindex 1 (> 0). The reurrene equation gives V1 � V0. By de�nition, the set W1of all �nite linear ombinations of the integer translates 2�1=2 (2�1x � k), andtheir limits in L2, is a subset of V0. From the equalities (1) and (2), we inferV0 = W1 M V1 and W1?V1With Vk andWk as the set of �nite linear ombinations of the integer translates2�k=2�(2�kx � l) and 2�k=2 (2�kx � l), respetively, and their limits in L2, wehave a sale of subspaes in L2,f0g � ::: � Vk+1 � Vk � Vk�1 � ::: � L2for all integers k, whereVk�1 = Wk M Vk and Wk?VkFurthermore, it an be shown that[k Vk = L2 and \k Vk = f0gwhere also limits in L2 are ounted as belonging to the union ('the losed hull isL2').If we let Pk and Qk denote the orthogonal projetions of Vk�1 on Vk and Wk,respetively, then Pk +Qk beomes the identity mapping on Vk�1.In the algorithms, the equalityV0 = W1 M W2 M ::: M WK M VKwas used together with the projetions Pk and Qk. The signal length is 2K, and itis supposed to belong to V0. The analysis algorithm means suessive projetionson the orthogonal subspaes. The fator H in the projetion Qk = H�H givesthe wavelet oe�ients as oe�ents in the linear ombination of  (2�kx � l),that is, in the sale 2k.
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A AppendixHere we give a proof of the Struture Theorem 1.2 for tempered distributions. Aharaterization onludes the appendix.Theorem A.1 (The Struture Theorem 1.2) Let T 2 S 0. Then ontinuousfuntions fj; j = 1; 2; : : :, and non-negative integers �j, exist suh that (in S 0)T = 1Xj=�1D�jfjThe somewhat tehnial proof is based on Lemma A.1.1 � 3, and on a result(whih we do not prove here) from Integration Theory. (None of these resultswill be used in the rest of the ourse.)Lemma A.1.1 Let T 2 S 0 and ' 2 S with '(x) = 0 for x 62 (a; b), whih is a�nite interval.Then a non-negative integer � and a onstant C exist so that (for these ')j < T; ' > j � C supx jD�'(x)jProof of Lemma A.1.1: Assume the ontrary, that is, �n ! 1 and 'n, n =1; 2; : : :, exist suh that supx jD�n'n(x)j �! 0but j < T; 'n > j � 1Now 'n ! 0 in S follows, sine, given �; �, take n suh that �n � �, and we getsupx (1 + jxj)�jD�'n(x)j � Ca;b supx jD�'n(x)j� Ca;b supx jD�n'n(x)j �! 0where the last inequality derives fromj'n(x)j = j Z xa D'n(y) dyj � (b� a) supx jD'n(x)jWe have now a ontradition: 'n ! 0 in S and j < T; 'n > j � 1. Thisproves the lemma.The smallest admissible � in Lemma A.1.1 is alled the order of T in (a; b).When the order is 0, T is alled a (tempered) measure in (a; b).45



Lemma A.1.2 Assume that DT has order � � 1 in (a; b). Then T has order� � 1.Proof of Lemma A.1.2: Let DT have order � � 1 in (a; b), and let ' be as inLemma A.1.1. We show that T then has order at most � � 1.We have j < DT; ' > j � C supx jD�'(x)jand thus j < T;D' > j � C supx jD�'(x)jwhih is the desired inequality, though only in a subspae of those funtions whihare derivatives. Fix now '0 as in Lemma A.1.1 with R '0(x) dx = 1. Taking  asin Lemma A.1.1, we have 36 (x) = DfZ xa  (y) dy� Z xa '0(y) dy Z ba  (y) dyg+ '0(x) Z ba  (y) dywhih yields (verify that the expression in urly brakets has the desired proper-ties!) j < T;  > j � Cfsupx jD�(Z xa  (y) dy � Z xa '0(y) dy Z ba  (y) dyj+j < T; '0 > Z ba  (y) dyjg� Cfsupx (jD��1 (x)j+ jD��1'0(x)jj Z ba  (y) dy)j)+j Z ba  (y) dy)jg� C supx jD��1 (x)jwhere the last inequality is obtained as in the proof of Lemma A.1.1. This showsthat the order of T is at most � � 1. (Verify 'at most' !) The proof is done.We will now prove the existene of a primitive distribution.Lemma A.1.3 Let T 2 S 0. Then S 2 S 0 exists with DS = T .Proof of Lemma A.1.3: If S existed, we would have (' 2 S)< T; ' > = < DS; ' > = � < S;D' >36 Compare the proof of Fourier's Inversion Formula.46



This equation de�nes S on the subspae of derivatives in S. Taking '0 as in theproof of Lemma A.1.2, we write again ( 2 S) (x) = DfZ x�1  (y) dy � Z x�1 '0(y) dy Z 1�1  (y) dyg+ '0(x) Z 1�1  (y) dyWe de�ne S('0) = k and now have S de�ned on the whole S. It remains to showthat  n ! 0 in S entails S( n) ! 0, whih is done as in the proof of LemmaA.1.1. (Verify that the objet to be di�erentiated is in S, and the last statement!)Proof of Theorem 1.2: To enable the use of Lemma A.1.1, where the interval is�nite, we partition T into a sum.Take 	 2 S suh that 	(x) > 0 when x 2 (�1; 1), and 	(x) = 0 otherwise.(Cf. Example 1.1.2.) Put  n(x) = 	(x � n)=P� 	(x � �) with n integer. Thisonstitutes a partition of unity, that is, Pn  n = 1 and  n 2 S (verify!).By Proposition 1.2.1, we may write T = Pn  nT in S 0 (verify!). Eah termgives, for ' 2 S with '(x) = 0 outside (n� 1; n+ 1), invoking Lemma A.1.1,j <  nT; ' > j = j < T;  n' > j� C supx jD�nf n(x)'(x)gj� C supx jD�n'(x)jthat is,  nT has order �n in (n� 1; n+ 1). By Lemma A.1.2 and Lemma A.1.3,there is a measure Sn with D�nSn =  nT . Now we ite, without proof, a result ofwhih the proof requires knowledge about the Lebesgue integral: Every measureis (in S 0) the seond derivative of a ontinuous funtion This results provides aontinuous funtion fn with D�n+2fn =  nT i S 0. Consequently, we have (withnew �n two units bigger) T =Xn D�nfnand the proof is omplete.A haraterization of tempered distributions is also obtained using the sametehnique.Proposition A.1.1 Let T : S !C be linear. Then T is a tempered distributionif, and only if, a onstant C and integers �; � exist, suh that (' 2 S)jT (')j � C supx 24(1 + jxj)� Xk�� jDk'(x)j3547



Proof: The 'if' part follows immediately from the de�nition of tempered distribu-tion. The 'only if' part follows by an obvious modi�ation of the proof of LemmaA.1.1. (Verify!)
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