MMA410, TMA 462 Fourier and Wavelet Analysis

Suggestions for solving the problems.
2007-12-19 kl. 8.30-13.30

1. Compute the Fourier transform of

$$
f(x)= \begin{cases}2 x & 0<x<a \tag{5p}\\ 1-x & a<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

for $0<a<1$.
Solution: Perhaps easiest to compute directly:

$$
\begin{aligned}
\hat{f}(\xi) & =2 \int_{0}^{a} x e^{-2 \pi i x \xi} d x+\int_{a}^{1}(1-x) e^{-2 \pi i x \xi} d x \\
& =-\frac{1-(4 i \pi a \xi+2 \pi i \xi-2) e^{-2 \pi i a \xi}+e^{-2 \pi i \xi}}{4 \pi^{2} \xi^{2}}
\end{aligned}
$$

2. Prove that $|f * g| \leq \int_{-\infty}^{\infty}|F G| d \xi$, if F and G are the Fourier transforms of F and G respectively. How does this relation change depending on the definition of the Fourier transform that is used?

Solution: With $F(\xi)=\int_{-\infty}^{\infty} \exp (-2 \pi i x \xi) f(x) d x$, we have

- $\mathcal{F}(f * g)=F G$
- $f(x)=\int_{-\infty}^{\infty} \exp (2 \pi i x \xi) F(\xi) d x$
so $|f * g(x)|=\left|\int_{-\infty}^{\infty} \exp (2 \pi i x \xi) F(\xi) G(\xi) d x\right| \leq \int_{-\infty}^{\infty}|F(\xi) G(\xi)| d \xi$.
Using e.g. $\hat{f}=\int_{-\infty}^{\infty} \exp (i x \xi) f(x) d x$ you must compensate with factors of 2π in the formula.

3. Write down a reasonable definition of an even tempered distribution, and prove that $\delta^{\prime \prime}$ is even.

Solution: A function $\phi \in \mathcal{S}(\mathbb{R})$ is even if $\phi(x)=\phi(-x)$, and odd if $\phi(x)=$ $-\phi(-x)$. One can say that a distribution $T \in \mathcal{S}^{\prime}$ is even if $T(\phi)=0$ for every odd function $\phi \in \mathcal{S}$. By definition $\left(D^{2} T\right)(\phi)=T\left(\phi^{\prime \prime}\right)$, and so $\delta^{\prime \prime}(\phi)=\phi^{\prime \prime}(0)$. But if ϕ is odd, so is $\phi^{\prime \prime}$, and an odd function in \mathcal{S} must be zero at $x=0$.
4. Let $\left\{\psi_{j, k}\right\}$ be an orthonormal basis in $L^{2}(\mathbb{R})$. Put $\Psi(t)=2^{1 / 2} \psi(2 t)$, and define $\Psi_{j, k}$ by rescaling and translation in the same way as the $\psi_{j, k}$ are obtained from the wavelet ϕ. Prove that $\left\{\Psi_{j, k}\right\}$ is an orthonormal system that is not a Riesz basis.
Solution: $\Psi_{j, k}(t)=2^{j / 2} \Psi\left(2^{j} t-k\right)=2^{(j+1) / 2} \psi\left(2^{j+1} t-2 k\right)=\psi_{j+1,2 k}(t)$. Hence the ON-condition is automatically satisfied. Morover we have, for all $j, k, j^{\prime}, k^{\prime}$ that $\left\langle\Psi_{j, k}, \psi_{j^{\prime}, 2 k^{\prime}+1}\right\rangle=0$, which contradicts the Riesz-condition, that there exist two constants $A<B$ so that for all $f \in L^{2}$, it must hold that $A\|f\| \leq \sum\left\langle f, \psi_{k}\right\rangle^{2} \leq B\|f\|$.
5. Let $f(x, y)=\operatorname{sinc}(x)^{2} \operatorname{sinc}(2 y)^{2}$, and let $R_{\theta} f(r)$ be the Radon transform of f. Show that for a given angle θ, it is enough to sample $R_{\theta} f(r)$ at discrete points $\left\{r_{j}\right\}$. How densely must it be sampled?
Solution: In general, $\mathcal{F}\left(R_{\theta} f\right)(\sigma)=\hat{f}(\sigma \theta)=\hat{f}(\sigma \cos (\theta), \sigma \sin (\theta))$ (recall that we identify θ with the unit vector with coordinates $(\cos (\theta), \sin (\theta))$. The Fourier transform of f is given by $\hat{f}(\xi, \eta)=\Lambda(\xi) \Lambda(\eta / 2) / 2$. It is zero outside the rectangle $\{(\xi, \eta)||\xi|<1,|\eta|<2\}$. This means that if $|\tan (\theta)|<2$, then $\mathcal{F}\left(R_{\theta} f\right)$ is band limited with bound $\sqrt{1+\tan (\theta)^{2}}$, and if $|\tan (\theta)|>2$ then $\mathcal{F}\left(R_{\theta} f\right)$ is band limited with bound $\sqrt{4+4 \cot (\theta)^{2}}$. The sampling rate of $R_{\theta} f(r)$ should be chosen accordingly.

