MATEMATISKA VETENSKAPER, Chalmers & Göteborgs universitet Hjälpmedel: Kurslitteratur, anteckningar, valfri räknare Telefon: Magnus Goffeng, tel. 0762-721860

> MMA410, TMA 462 Fourier and Wavelet Analysis Suggestions for solving the problems.

2007–12–19 kl. 8.30–13.30

1. Compute the Fourier transform of

$$f(x) = \begin{cases} 2x & 0 < x < a \\ 1 - x & a < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

for 0 < a < 1.

Solution: Perhaps easiest to compute directly:

$$\hat{f}(\xi) = 2 \int_0^a x e^{-2\pi i x\xi} dx + \int_a^1 (1-x) e^{-2\pi i x\xi} dx$$
$$= -\frac{1 - (4i\pi a\xi + 2\pi i\xi - 2) e^{-2\pi i a\xi} + e^{-2\pi i\xi}}{4\pi^2 \xi^2}$$

2. Prove that $|f * g| \leq \int_{-\infty}^{\infty} |FG|d\xi$, if F and G are the Fourier transforms of F and G respectively. How does this relation change depending on the definition of the Fourier transform that is used?

Solution: With $F(\xi) = \int_{-\infty}^{\infty} \exp(-2\pi i x \xi) f(x) dx$, we have

- $\mathcal{F}(f * g) = FG$
- $f(x) = \int_{-\infty}^{\infty} \exp(2\pi i x \xi) F(\xi) dx$

so
$$|f * g(x)| = \left| \int_{-\infty}^{\infty} \exp(2\pi i x \xi) F(\xi) G(\xi) dx \right| \leq \int_{-\infty}^{\infty} |F(\xi) G(\xi)| d\xi.$$

Using e.g. $\hat{f} = \int_{-\infty}^{\infty} \exp(ix\xi) f(x) dx$ you must compensate with factors of 2π in the formula.

3. Write down a reasonable definition of an *even* tempered distribution, and prove that δ'' is even.

Solution: A function $\phi \in \mathcal{S}(\mathbb{R})$ is even if $\phi(x) = \phi(-x)$, and odd if $\phi(x) = -\phi(-x)$. One can say that a distribution $T \in \mathcal{S}'$ is even if $T(\phi) = 0$ for every odd function $\phi \in \mathcal{S}$. By definition $(D^2T)(\phi) = T(\phi'')$, and so $\delta''(\phi) = \phi''(0)$. But if ϕ is odd, so is ϕ'' , and an odd function in \mathcal{S} must be zero at x = 0.

4. Let $\{\psi_{j,k}\}$ be an orthonormal basis in $L^2(\mathbb{R})$. Put $\Psi(t) = 2^{1/2}\psi(2t)$, and define $\Psi_{j,k}$ by rescaling and translation in the same way as the $\psi_{j,k}$ are obtained from the wavelet ϕ . Prove that $\{\Psi_{j,k}\}$ is an orthonormal system that is not a Riesz basis.

Solution: $\Psi_{j,k}(t) = 2^{j/2} \Psi(2^j t - k) = 2^{(j+1)/2} \psi(2^{j+1}t - 2k) = \psi_{j+1,2k}(t)$. Hence the ON-condition is automatically satisfied. Moreover we have, for all j, k, j', k' that $\langle \Psi_{j,k}, \psi_{j',2k'+1} \rangle = 0$, which contradicts the Riesz-condition, that there exist two constants A < B so that for all $f \in L^2$, it must hold that $A \| f \| \leq \sum \langle f, \psi_k \rangle^2 \leq B \| f \|$. (5p)

(5p)

(5p)

(5p)

5. Let $f(x,y) = \operatorname{sinc}(x)^2 \operatorname{sinc}(2y)^2$, and let $R_{\theta}f(r)$ be the Radon transform of f. Show that for a given angle θ , it is enough to sample $R_{\theta}f(r)$ at discrete points $\{r_j\}$. How densely must it be sampled?

Solution: In general, $\mathcal{F}(R_{\theta}f)(\sigma) = \hat{f}(\sigma\theta) = \hat{f}(\sigma\cos(\theta), \sigma\sin(\theta))$ (recall that we identify θ with the unit vector with coordinates $(\cos(\theta), \sin(\theta))$. The Fourier transform of f is given by $\hat{f}(\xi, \eta) = \Lambda(\xi)\Lambda(\eta/2)/2$. It is zero outside the rectangle $\{(\xi, \eta) \mid |\xi| < 1, |\eta| < 2\}$. This means that if $|\tan(\theta)| < 2$, then $\mathcal{F}(R_{\theta}f)$ is band limited with bound $\sqrt{1 + \tan(\theta)^2}$, and if $|\tan(\theta)| > 2$ then $\mathcal{F}(R_{\theta}f)$ is band limited with bound $\sqrt{4 + 4\cot(\theta)^2}$. The sampling rate of $R_{\theta}f(r)$ should be chosen accordingly. (5p)

Good luck! Bernt W.