Mathematics Chalmers \& GU

TMA462/MMA410: Fourier and Wavelet Analysis, 2012-12-20; kl 14:00-18:00.

Telephone: Richard Lärkäng: 0703-088304
Course Books: Bergh et al AND Bracewell, Lecture Notes and Calculator are allowed.
Each problem gives max 5p. Breakings: 3: 12-15p, 4: 16-19p och 5: 20p-
For GU G students :12p, VG: 18p- (if applicable)
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma462/1213/index.html

1. Show that $\{\Lambda(t-n)\}_{n=-\infty}^{\infty}$ are linearly independent.
2. Determine the periodic autocorrelation of the function $f(x)=\cos 2 \pi x$.
3. Let $a>0$ and derive the Fourier transform of $\sum_{n=-\infty}^{\infty} \delta_{a n}$.
4. Assume that φ is the scaling function in an orthogonal multi-resolution anlysis (OG-MRA). Show that the support of $\hat{\varphi}$ measures at least 2π.
5. Assume that φ and ψ are the scaling function and the wavelet of an MRA, respectively. Assume further that φ has vanishing moments of order $\leq L$, i.e.

$$
\int t^{k} \varphi(t) d t=0, \quad 1 \leq k \leq L
$$

Show that ψ has vanishing moments of order $\leq L / 2$:

$$
\int t^{k} \psi(t) d t=0, \quad 1 \leq k \leq L / 2
$$

Note that zero moments are not included.
MA
void!

TMA462/MMA410: Fourier and Wavelet Analysis, 2012-12-20; kl 14:00-18:00..

Lösningar/Solutions.

1. Show that $\{\Lambda(t-n)\}_{n=-\infty}^{\infty}$ are linearly independent.

Solution: We have that

$$
\Lambda(x)= \begin{cases}1-|x|, & |x| \leq 1 \\ 0, & |x|>1\end{cases}
$$

$$
\sum_{n=M}^{N} C_{n} \Lambda(t-n)=0, \quad \Longrightarrow \quad t=k, \quad \text { gives } \quad C_{k}=0, \quad-M \leq k \leq N
$$

In other words $\{\Lambda(t-n)\}_{n=-M}^{N}$ is linearly independent for all M and N. Hence, $\{\Lambda(t-n)\}_{n=-\infty}^{\infty}$ is linearly independent.
2. Determine the periodic autocorrelation of the function $f(x)=\cos 2 \pi x$.

Solution: The function $f(x)=\cos 2 \pi x$ is periodic with period 1. Its periodic autocorrelation is then defined as

$$
\begin{aligned}
f \star f(x) & =\int_{0}^{1} f(u) f(u-x) d u=[u-x=y] \\
& =\int_{-x}^{1}-x f(x+y) f(y) d y=[\text { the integrand is 1-periodic }] \\
& =\int_{0}^{1} f(u) f(u-x) d u=\int_{0}^{1}=\cos 2 \pi u \cdot \cos 2 \pi(u-x) d u \\
& =\int_{0}^{1} \frac{1}{2}[\cos (2 \pi u-2 \pi(u-x))+\cos (2 \pi u+2 \pi(u-x))] d u \\
& =\frac{1}{2} \int_{0}^{1}[\cos 2 \pi x+\cos (2 \pi u+2 \pi(2 u-x))] d u=\frac{1}{2} \cos 2 \pi x+\frac{1}{2} \frac{1}{4 \pi}[\sin 2 \pi(2 u-x)]_{0}^{1} \\
& =\frac{1}{2} \cos 2 \pi x+\frac{1}{8 \pi}(\sin 2 \pi(1-x)+\sin 2 \pi x)=\frac{1}{2} \cos 2 \pi x
\end{aligned}
$$

3. Let $a>0$ and derive the Fourier transform of $\sum_{n=-\infty}^{\infty} \delta_{a n}$.

Solution: We have that

$$
\left\langle\delta_{a n}, \varphi\right\rangle=\left\langle\delta, \varphi_{-a n}\right\rangle=\varphi(a n), \quad \varphi \in S
$$

Hence

$$
\left\langle\mathcal{F} \delta_{a n}, \varphi\right\rangle=\left\langle\delta_{a n}, \hat{\varphi}\right\rangle=\hat{\varphi}(a n)=\frac{1}{a} \mathcal{F}\left[\varphi\left(\frac{x}{a}\right)\right](n)=\left\langle\delta_{n}, \frac{1}{a} \mathcal{F}\left[\varphi\left(\frac{x}{a}\right)\right]\right\rangle=\frac{1}{a}\left\langle\mathcal{F} \delta_{n}, \varphi\left(\frac{x}{a}\right)\right\rangle .
$$

Using this identity we can write

$$
\begin{aligned}
\left\langle\mathcal{F}\left[\sum_{n=-\infty}^{\infty} \delta_{a n}\right], \varphi\right\rangle & =\frac{1}{a} \sum_{n=-\infty}^{\infty}\left\langle\mathcal{F} \delta_{n}, \varphi\left(\frac{x}{a}\right)\right\rangle=\frac{1}{a}\left\langle\sum_{n=-\infty}^{\infty} \mathcal{F} \delta_{n}, \varphi\left(\frac{x}{a}\right)\right\rangle \\
& =\frac{1}{a}\left\langle\mathcal{F} \sum_{n=-\infty}^{\infty} \delta_{n}, \varphi\left(\frac{x}{a}\right)\right\rangle=\frac{1}{a}\left\langle\sum_{n=-\infty}^{\infty} \delta_{n}, \varphi\left(\frac{x}{a}\right)\right\rangle=\frac{1}{a} \sum_{n=-\infty}^{\infty}\left\langle\delta_{n}, \varphi\left(\frac{x}{a}\right)\right\rangle \\
& =\frac{1}{a} \sum_{n=-\infty}^{\infty} \varphi\left(\frac{n}{a}\right)=\frac{1}{a} \sum_{n=-\infty}^{\infty}\left\langle\delta_{n / a}, \varphi\right\rangle=\left\langle\frac{1}{a} \sum_{n=-\infty}^{\infty} \delta_{n / a}, \varphi\right\rangle .
\end{aligned}
$$

Thus

$$
\mathcal{F}\left[\sum_{n=-\infty}^{\infty} \delta_{a n}\right]=\frac{1}{a} \sum_{n=-\infty}^{\infty} \delta_{n / a}
$$

4. Assume that φ is the scaling function in an orthogonal multi-resolution anlysis (OG-MRA). Show that the support of $\hat{\varphi}$ measures at least 2π.
Solution: We have using Plancherel relation that

$$
\begin{aligned}
\delta_{k} & =\int_{-\infty}^{\infty} \varphi(t) \varphi(t-k) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\varphi}(\omega) \overline{e^{-i k \omega} \hat{\varphi}(\omega)} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{\varphi}(\omega)|^{2} e^{i k \omega} d \omega=\frac{1}{2 \pi} \sum_{-\infty}^{\infty} \int_{2 n \pi}^{2(n+1) \pi}|\hat{\varphi}(\omega)|^{2} e^{i k \omega} d \omega=[\omega-2 \pi n \rightarrow \omega] \\
& =\frac{1}{2 \pi} \sum_{-\infty}^{\infty} \int_{0}^{2 \pi}|\hat{\varphi}(\omega+2 n \pi)|^{2} e^{i k(\omega+2 n \pi)} d \omega=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{-\infty}^{\infty}|\hat{\varphi}(\omega+2 n \pi)|^{2} e^{i k \omega} d \omega .
\end{aligned}
$$

This yields

$$
\sum_{-\infty}^{\infty}|\hat{\varphi}(\omega+2 n \pi)|^{2}=1, \quad \forall \omega \quad \text { (or for a.e.). }
$$

Let now $S=\operatorname{supp} \hat{\varphi}=\overline{\{\hat{\varphi}(\omega) \neq 0\}}$. Then $|\hat{\varphi}(\omega)|^{2} \leq 1$ for all ω gives the measure of

$$
|S|=\int_{S} d \omega \geq \int_{S}|\hat{\varphi}(\omega)|^{2} d \omega=\int_{-\infty}^{\infty}|\hat{\varphi}(\omega)|^{2} d \omega=2 \pi \int_{-\infty}^{\infty}|\varphi(x)|^{2} d x=2 \pi
$$

where we have assumed that $\|\varphi\|_{L^{2}}=1$.
5. Assume that φ and ψ are the scaling function and the wavelet of an MRA, respectively. Assume further that φ has vanishing moments of order $\leq L$, i.e.

$$
\int t^{k} \varphi(t) d t=0, \quad 1 \leq k \leq L
$$

Show that ψ has vanishing moments of order $\leq L / 2$:

$$
\int t^{k} \psi(t) d t=0, \quad 1 \leq k \leq L / 2
$$

Note that zero moments are not included.
Solution: We have that

$$
\mathcal{F}\left[t^{k} \varphi(t)\right](\omega)=i^{k} D^{k} \hat{\varphi}(\omega)
$$

The assumption

$$
\int t^{k} \varphi(t) d t=i^{k} D^{k} \hat{\varphi}(0)=0, \quad k=1, \ldots, L
$$

yields

$$
D^{k} \hat{\varphi}(0)=0
$$

which together with

$$
\hat{\varphi}(2 \omega)=H(\omega) \hat{\varphi}(\omega), \quad \hat{\varphi}(0)=1, \quad H(0)=1
$$

and the trivial expansion

$$
2^{k} D^{k} \hat{\varphi}(2 \omega)=\sum_{\alpha=0}^{k}\binom{k}{\alpha} D^{k-\alpha} H(\omega) D^{\alpha} \hat{\varphi}(\omega), \quad \text { implies that } \quad 2^{k} D^{k} \hat{\varphi}(0)=D^{k} H(0) \cdot 1
$$

Thus

$$
D^{k} H(0)=0, \quad 1 \leq k \leq L
$$

Further, for the orthogonal system we have that

$$
|H(\omega)|^{2}+|G(\omega)|^{2}=1
$$

which together with Binomial expansions and properties of $H\left(H(0)=1, D^{k} H(0)=0,1 \leq k \leq L\right)$ gives that

$$
H(\omega)-1=\omega^{L+1} H_{1}(\Omega)
$$

Thus for sufficiently small $|\omega|$ with $|H(\omega)| \leq 1$ we have that

$$
\begin{aligned}
|G(\omega)|^{2} & =1-|H(\omega)|^{2}=(1-|H(\omega)|)(1+|H(\omega)|) \\
& \leq 2(1-|H(\omega)|) \leq 2|1-H(\omega)|=2|\omega|^{L+1}\left|H_{1}(\Omega)\right| \leq C_{1}|\omega|^{L+1}
\end{aligned}
$$

Hence

$$
|G(\omega)| \leq C|\omega|^{\frac{L+1}{2}}
$$

which implies that

$$
D^{k} G(0)=0, \quad k=0,1, \ldots,\left[\frac{L}{2}\right]
$$

Consequently, using

$$
\int t^{k} \psi(t) d t=i^{k} D^{k} \hat{\psi}(0), \quad \text { and } \quad \hat{\psi}(2 \omega)=G(\omega) \hat{\psi}(\omega)
$$

we may use Binomisal polynomial again and write

$$
2^{k} D^{k} \hat{\psi}(2 \omega)=\sum_{\alpha=0}^{k}\binom{k}{\alpha} D^{k-\alpha} G(\omega) D^{\alpha} \hat{\varphi}(\omega)
$$

where $D^{k} \hat{\varphi}(0)=0$ for $k=1, \ldots, L$ implies that

$$
2^{k} D^{k} \hat{\psi}(0)=D^{k} G(0)=0, \quad \Longrightarrow \quad \int t^{k} \psi(t) d t=0
$$

